Chapter 14

Transportation in the Supply Chain

Transportation
- A key decision area within the logistics mix

Inventory Strategy
- Forecasting
- Storage decisions
- Inventory decisions
- Purchasing & supply planning ...

Transport Strategy
- Transport fundamentals
- Transportation decisions

Customer Service Goals

Network & Facility Strategy
- Network design
- Location decisions
- Facility decisions ...

Also refer to what you learnt from:
- Resource Allocation Techniques
- Decision Making under Uncertainty

The role of transportation in the SC
- a significant link between different stages in a global supply chain
- a critical component in a supply chain
- a competitive strategy
- a key to the success of on-line business

Transportation decisions
- Mode of transportation
- Transportation network selection
- Transportation routing and scheduling
- In house or outsource
- ...

Overall trade-off:
Responsiveness vs. Efficiency
(speed) (cost)
Factors affecting transportation decisions

Shipper
- Transportation cost
- Inventory cost
- Facility cost
- Processing cost
- Service level cost
- ...

Carrier
- Vehicle-related cost
- Fixed operating cost
- Trip-related cost
- Quantity related cost
- Overhead cost
- ...

Transportation Modes

- **Trucks**
 - TL
 - LTL
- Rail
- Air
- Package Carriers
- Water
- Pipeline

Intermodal
- Use of more than one mode of transportation to move a shipment to its destination
- Most common example: rail/truck
- Also water/rail/truck or water/truck
- Grown considerably with increased use of containers
- Increased global trade has also increased use of intermodal transportation
- More convenient for shippers (one entity provides the complete service)
- Key issue involves the exchange of information to facilitate transfer between different transport modes

Transportation System/Network Design

Goal: To achieve the desired degree of responsiveness at a low cost

Case 1:
- AC Delco: Very high value low volume parts
 - Three plants: Milwaukee, Kokomo, Matamoros
 - 21 assembly plants (customers for above plants)
- What are the distribution options?
- Which one to select?
- On what basis?

Option 1: All Shipments Direct

<table>
<thead>
<tr>
<th></th>
<th>Transport</th>
<th>Inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Load</td>
<td>$2.0 Million</td>
<td>$17.5 Million</td>
</tr>
<tr>
<td>Optimal</td>
<td>$4.0 Million</td>
<td>$5.6 Million</td>
</tr>
</tbody>
</table>

Total cost: $9.6 million

Suppliers

Retailers

Direct Shipment Network
Option 2: All Shipments Via Kokomo (with or without cross dock)

Kokomo - central distribution center (DC)

<table>
<thead>
<tr>
<th>Transport</th>
<th>Inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Load</td>
<td>$2.1 Million</td>
</tr>
<tr>
<td>Optimal</td>
<td>$3.0 Million</td>
</tr>
</tbody>
</table>

$10.2 million

Option 3: Some Shipments Direct, Others Via Kokomo

<table>
<thead>
<tr>
<th>Transport</th>
<th>Inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal</td>
<td>$3.7 Million</td>
</tr>
</tbody>
</table>

$9.5 million

Option 4: Milk Runs From Kokomo

Milk run - A product delivery (one trip) of one-to-many or many-to-one

<table>
<thead>
<tr>
<th>Transport</th>
<th>Inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal</td>
<td>$2.4 Million</td>
</tr>
</tbody>
</table>

$9.6 million

Option 5: Milk Runs From Plants

<table>
<thead>
<tr>
<th>Transport</th>
<th>Inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal</td>
<td>$3.5 Million</td>
</tr>
</tbody>
</table>

$8.1 million
Option 6: Cross Dock

This approach is useful if deliveries are time sensitive and there are several dropoffs in proximity, not all of which can be delivered on a single truck.

Crossdock – a process in which product is exchanged between trucks so that each truck going to a retail store has products from different suppliers.

Total Costs

<table>
<thead>
<tr>
<th>Routes</th>
<th>Transport</th>
<th>Inventory</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct, Full Load</td>
<td>2.0</td>
<td>17.5</td>
<td>19.5</td>
</tr>
<tr>
<td>Direct, Optimal Load</td>
<td>4.0</td>
<td>5.6</td>
<td>9.6</td>
</tr>
<tr>
<td>Via Kokomo, Full Load</td>
<td>2.1</td>
<td>9.7</td>
<td>11.8</td>
</tr>
<tr>
<td>Via Kokomo, Optimal Load</td>
<td>3.0</td>
<td>7.2</td>
<td>10.2</td>
</tr>
<tr>
<td>Direct + Kokomo</td>
<td>4.7</td>
<td>5.8</td>
<td>9.5</td>
</tr>
<tr>
<td>Milk run from Kokomo</td>
<td>2.4</td>
<td>7.2</td>
<td>9.6</td>
</tr>
<tr>
<td>Milk run from Plants</td>
<td>3.5</td>
<td>4.6</td>
<td>8.1</td>
</tr>
</tbody>
</table>

Design Options for a Transportation Network

- What are the transportation options? Which one to select? On what basis?
- Direct shipping network
- Direct shipping with milk runs
- All shipments via central DC
- Shipping via DC using milk runs
- Tailored network

Tradeoffs in Transportation System Design

- Transportation cost and inventory cost
 - Choice of transportation mode
 - Inventory aggregation
- Transportation cost and customer responsiveness
 - The transportation cost a SC incurs is closely linked to the degree of responsiveness the SC aims to provide
- System efficiency and responsiveness
Case 2: Transportation Model Selection at Eastern Electric Corporation

- Annual demand = 120,000 motors
- Cost per motor = $120
- Current order size = 3,000 motors
- Safety stock carried = 80% of demand during delivery lead time
- Holding cost = 25%

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Transport Cost</th>
<th>Average Inventory</th>
<th>Safety Inventory</th>
<th>Transit Inventory</th>
<th>Inventory Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM Rail (2,000)</td>
<td>$76,000</td>
<td>2,000</td>
<td>800</td>
<td>1,644</td>
<td>$100,900</td>
<td>$176,900</td>
</tr>
<tr>
<td>Northeast Trucking (1,000)</td>
<td>$90,000</td>
<td>500</td>
<td>658</td>
<td>986</td>
<td>$64,320</td>
<td>$154,320</td>
</tr>
<tr>
<td>Golden (500)</td>
<td>$96,000</td>
<td>250</td>
<td>658</td>
<td>986</td>
<td>$56,820</td>
<td>$152,820</td>
</tr>
<tr>
<td>Golden (2,500)</td>
<td>$86,400</td>
<td>1,250</td>
<td>658</td>
<td>986</td>
<td>$86,820</td>
<td>$173,220</td>
</tr>
<tr>
<td>Golden (3,000)</td>
<td>$78,000</td>
<td>1,500</td>
<td>658</td>
<td>986</td>
<td>$94,320</td>
<td>$172,320</td>
</tr>
<tr>
<td>Golden (4,000)</td>
<td>$67,500</td>
<td>2,000</td>
<td>658</td>
<td>986</td>
<td>$109,320</td>
<td>$176,820</td>
</tr>
</tbody>
</table>

Key point:
When selecting a mode of transportation, inventory costs must be accounted. Modes with high transportation cost can be justified if they result in significantly lower inventories.

Physical Inventory Aggregation: Inventory vs. Transportation Cost

- As a result of physical aggregation:
 - Inventory costs decrease
 - Inbound transportation cost decreases
 - Outbound transportation cost increases
 - Inventory aggregation decisions must account for inventory and transportation cost.
 - Inventory decreases supply chain costs if the product has a high value-to-weight ratio and high demand uncertainty and large orders. Otherwise, inventory aggregation may increase supply chain costs.

Inventory Aggregation at HighMed

Current structure:
- 24 territories, each with its own sales force. All product inventories are maintained locally and replenished from Madison every 4 weeks using UPS with the average lead time of one week.

Two categories of products:
- Highval ($200, 1 lbs/unit) demand in each of 24 territories
 - \(\mu_H = 2, \sigma_H = 5 \)
- Lowval ($30/unit, 0.04 lbs/unit) demand in each territory
 - \(\mu_L = 20, \sigma_L = 5 \)

Two options under evaluation:
- Option A: Keep the current structure. But replenish inventory once a week.
- Option B: Aggregate all inventories at Madison. Replenish the warehouse once a week.

Two carries under consideration:
- UPS rate: $0.66 + 0.26x (for replenishments)
- FedEx rate: $5.53 + 0.53x (for customer shipping)

Inventory Aggregation at HighMed

<table>
<thead>
<tr>
<th>Current Scenario</th>
<th>Option 1</th>
<th>Option 2</th>
</tr>
</thead>
<tbody>
<tr>
<td># Locations</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Reorder Interval</td>
<td>4 weeks</td>
<td>1 week</td>
</tr>
<tr>
<td>Inventory Cost</td>
<td>$54,366</td>
<td>$29,795</td>
</tr>
<tr>
<td>Shipment Size</td>
<td>8 H + 80 L</td>
<td>2 H + 20 L</td>
</tr>
<tr>
<td>Transport Cost</td>
<td>$530</td>
<td>$1,148</td>
</tr>
<tr>
<td>Total Cost</td>
<td>$54,896</td>
<td>$30,943</td>
</tr>
</tbody>
</table>

If shipment size to customer is 0.5H + 5L, total cost of option 2 increases to $36,729.
Trade-offs Between Transportation Cost and Customer Responsiveness

- Temporal aggregation is the process of combining orders across time.
- Temporal aggregation reduces transportation cost because it results in larger shipments and reduces variation in shipment sizes.
- However, temporal aggregation reduces customer responsiveness.

Tailored Transport

- The use of different transportation networks and modes based on customer and product characteristics.
- Factors affecting tailoring:
 - Customer distance and density
 - Customer size
 - Product demand and value

Routing and Scheduling in Transportation

- The most important operational decision related to transportation in a supply chain.
- Basic decisions:
 - Sequencing, routing, scheduling and dispatching
- Methods:
 - Mathematical programming
 - Heuristics
 - Simulation
 - Expert systems
- Commercial software:

Vehicle Routing

<table>
<thead>
<tr>
<th></th>
<th>X-Coordinate</th>
<th>Y-Coordinate</th>
<th>Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whse</td>
<td>0</td>
<td>0</td>
<td>48</td>
</tr>
<tr>
<td>Customer 1</td>
<td>6</td>
<td>12</td>
<td>36</td>
</tr>
<tr>
<td>Customer 2</td>
<td>6</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>Customer 3</td>
<td>15</td>
<td>13</td>
<td>64</td>
</tr>
<tr>
<td>Customer 4</td>
<td>9</td>
<td>12</td>
<td>50</td>
</tr>
<tr>
<td>Customer 5</td>
<td>15</td>
<td>3</td>
<td>57</td>
</tr>
<tr>
<td>Customer 6</td>
<td>20</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>Customer 7</td>
<td>17</td>
<td>2</td>
<td>46</td>
</tr>
<tr>
<td>Customer 8</td>
<td>17</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>Customer 9</td>
<td>1</td>
<td>-6</td>
<td>27</td>
</tr>
<tr>
<td>Customer 10</td>
<td>15</td>
<td>-6</td>
<td>47</td>
</tr>
<tr>
<td>Customer 11</td>
<td>20</td>
<td>7</td>
<td>55</td>
</tr>
<tr>
<td>Customer 12</td>
<td>2</td>
<td>-15</td>
<td>36</td>
</tr>
</tbody>
</table>

Distance Matrix

<table>
<thead>
<tr>
<th></th>
<th>Whse</th>
<th>Cust 1</th>
<th>Cust 2</th>
<th>Cust 3</th>
<th>Cust 4</th>
<th>Cust 5</th>
<th>Cust 6</th>
<th>Cust 7</th>
<th>Cust 8</th>
<th>Cust 9</th>
<th>Cust 10</th>
<th>Cust 11</th>
<th>Cust 12</th>
<th>Cust 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whse</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Cust 1</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Cust 2</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Cust 3</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Cust 4</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Cust 5</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Cust 6</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Cust 7</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Cust 8</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Cust 9</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Cust 10</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Cust 11</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Cust 12</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Cust 13</td>
<td>0</td>
<td>12</td>
</tr>
</tbody>
</table>
Vehicle Routing

Savings Matrix

- Represents the savings that accrue on consolidating two customers on a single truck.
- Savings may be evaluated in terms of distance, time, or money.

<table>
<thead>
<tr>
<th></th>
<th>Cust 1</th>
<th>Cust 2</th>
<th>Cust 3</th>
<th>Cust 4</th>
<th>Cust 5</th>
<th>Cust 6</th>
<th>Cust 7</th>
<th>Cust 8</th>
<th>Cust 9</th>
<th>Cust 10</th>
<th>Cust 11</th>
<th>Cust 12</th>
<th>Cust 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truck</td>
<td></td>
</tr>
<tr>
<td>Cust 1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cust 2</td>
<td>2</td>
<td>11</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Cust 3</td>
<td>3</td>
<td>21</td>
<td>15</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cust 4</td>
<td>4</td>
<td>18</td>
<td>15</td>
<td>28</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cust 5</td>
<td>5</td>
<td>10</td>
<td>14</td>
<td>18</td>
<td>19</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cust 6</td>
<td>6</td>
<td>9</td>
<td>13</td>
<td>17</td>
<td>19</td>
<td>29</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cust 7</td>
<td>7</td>
<td>7</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>27</td>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cust 8</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>14</td>
<td>15</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cust 9</td>
<td>9</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cust 10</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>22</td>
<td>28</td>
<td>29</td>
<td>16</td>
<td>8</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cust 11</td>
<td>11</td>
<td>5</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>25</td>
<td>34</td>
<td>32</td>
<td>16</td>
<td>8</td>
<td>32</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cust 12</td>
<td>12</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>15</td>
<td>16</td>
<td>14</td>
<td>10</td>
<td>18</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>Cust 13</td>
<td>13</td>
<td>2</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>18</td>
<td>25</td>
<td>25</td>
<td>15</td>
<td>10</td>
<td>28</td>
<td>31</td>
<td>21</td>
</tr>
</tbody>
</table>

Characteristics of routing and scheduling problems

1. Size of available fleet
 - one vehicle or multiple vehicle
2. Type of available fleet
 - only one vehicle type
 - multiple vehicle types
 - special vehicle types
3. Housing of vehicles
 - single depot or multiple depots
4. Nature of demands
 - deterministic (known) demands
 - stochastic demands
 - partial satisfaction of demand allowed
5. Location of demands
 - at nodes (not necessarily all)
 - in arcs
 - mixed
6. Underlying network
 - undirected
 - directed
 - mixed
 - euclidean
7. Vehicle capacity restrictions
 - imposed (all the same)
 - different vehicle capacities
 - not imposed (unlimited)
8. Maximum route times
 - imposed (all the same)
 - imposed (different)
 - not imposed
9. Operations
 - pickups only
 - drop-offs (deliveries) only
 - mixed
 - split deliveries (allowed or disallowed)

Characteristics of routing and scheduling problems (cont'd)

10. Costs
 - variable or routing costs
 - fixed operating or vehicle costs
 - common carrier costs (for un-serviced demands)
11. Objectives
 - minimize total routing costs
 - minimizing sum of fixed and variable costs
 - maximize utilization function based on service or convenience
 - maximize utility function based on customer priorities
 - ... and many more...

Heuristic approaches:

- Effective for solving many real-world or complex optimization problems
- Why using heuristics?
 - Analytical procedures not available
 - The problem is too large
 - Simplify complex problems
- Optimizing vs. satisfying
 - (exact optimal solution vs. near optimal solution)
- Basic heuristics
 - Nearest-Neighbor rule
 - Nearest (cheapest) Inserting rule
 - Geometric heuristic rule
 - Lagrangian relaxation, Tabu search, Simulated Annealing, Generic approach, Neural network...
- Multiple vehicle strategies
 - Routing first, clustering second
 - Clustering first, routing second
 - interactive
Optimal Route:
The solution by NN heuristics: