Estimating Sensitivities of Portfolio Credit Risk Using Monte Carlo

L. Jeff Hong
Department of Economics and Finance and Department of Management Sciences, College of Business, City University of Hong Kong, Kowloon, Hong Kong, jeffhong@cityu.edu.hk

Sandeep Juneja
School of Technology and Computer Science, Fundamental Research, Mumbai, India 400005, juneja@tifr.res.in

Jun Luo
Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai 200052, China, jluo_ms@sjtu.edu.cn

Estimating the sensitivities of portfolio credit risk with respect to the underlying model parameters is an important problem for credit risk management. In this paper, we consider performance measures that may be expressed as an expectation of a performance function of the portfolio credit loss and derive closed-form expressions of its sensitivities to the underlying parameters. Our results are applicable to both idiosyncratic and macroeconomic parameters and to performance functions that may or may not be continuous. Based on the closed-form expressions, we first develop an estimator for sensitivities, in a general framework, that relies on the kernel method for estimation. The unified estimator allows us to further derive two general forms of the estimators by using conditioning techniques on either idiosyncratic or macroeconomic factors. We then specialize our results to develop faster estimators for three popular classes of models used for portfolio credit risk: latent variable models, Bernoulli mixture models, and doubly stochastic models.

Keywords: sensitivity estimation; Monte Carlo simulation; conditioning techniques

History: Accepted by Marvin Nakayama, Area Editor for Simulation; received February 2013; revised July 2013, January 2014; accepted January 2014. Published online in Articles in Advance June 27, 2014.

1. Introduction
Large financial institutions are exposed to multiple sources of credit risk. A portfolio approach is then needed to accurately measure and manage the overall credit exposure. This need has become especially urgent in view of the ongoing global financial crisis triggered, among other reasons, by poor risk management by some of the largest financial institutions. Some of the key issues then include developing an accurate model for measuring portfolio risk, selecting appropriate performance measures to capture portfolio risk, and designing effective portfolio risk hedging strategies. Computing sensitivities of the selected performance measure to underlying parameters is crucial to risk analysis and management and to the related risk-hedging problem. In this paper, we address this issue for a large class of portfolio risk performance measures.

Accurately modeling dependence between default events is a key issue in selecting a model for portfolio credit risk. Three types of models that are commonly used in practice are latent variable models, Bernoulli mixture models, and doubly stochastic models. In latent variable models, a default occurs if a random variable (called a latent variable) falls below a certain threshold, and the dependence between the default of different firms is modeled by the dependence between their respective latent variables. These models are motivated by the seminal firm-value work by Merton (1974). These are used in commercial products such as J.P. Morgan’s CreditMetrics (Gupton et al. 1997) and Moody’s KMV system (Kealhofer and Bohn 2001). It can be shown that the Gaussian copula model proposed by Li (2000), which is used commonly in pricing credit derivatives, is a special instance of the latent variable models. In Bernoulli mixture models, default probabilities of individual obligors depend on each other through a common set of macroeconomic factors. Conditioned on these factors, default events are independent Bernoulli random variables. These models are used in CreditRisk+, a product developed by Credit Suisse Financial Products (Credit-Suisse-Financial-Products 1997). In doubly stochastic models, also known as Cox process models, a default occurs at the first jump time of a doubly stochastic process with a nonnegative intensity process. The dependence between obligors can be captured by the dependence between the intensity processes (see, e.g., Duffie and Singleton 1999).

Given a model of joint defaults, portfolio credit loss is a random variable denoting the sum of losses caused
by all of the default obligors. In many situations, to manage credit risk or to price credit derivatives, we are interested in performance measures that can be written as expectations of some performance functions of the credit loss. For instance, the probability that the loss is beyond a certain threshold and the average loss when it is beyond that threshold are related to popular risk measures such as value-at-risk and tail conditional expectation; the expected loss when it is within a certain range (called a tranche) is the building block that defines the price of a collateralized debt obligation (CDO), a popular credit derivative.

In a model of joint defaults, there are often many parameters. Some of them affect only individual obligors, such as the parameters related to an obligor’s idiosyncratic risk, whereas some affect all of the obligors in the portfolio, such as the parameters related to macroeconomic factors. Any changes to these parameters may affect the portfolio credit loss and, thus, the performance measures that we are interested in. One approach to characterizing the impact of parameter changes is to calculate sensitivities, which are the first-order derivatives of the performance measures with respect to the parameters. Sensitivities provide information on how small movements of parameters affect performance measures. This information is important in risk analysis and portfolio management. For instance, delta hedging is one of the most fundamental tools in portfolio risk management, where deltas are the sensitivities of portfolio value with respect to the underlying risk factors. In this paper, we consider the estimation of sensitivities of portfolio credit risk with respect to different parameters, either idiosyncratic or macroeconomic. We focus on the three different credit risk models mentioned earlier: latent variable, Bernoulli mixture, and doubly stochastic models. The results that we develop may be applicable to a broader set of credit risk models. However, we illustrate the key ideas with three popular models. Fast and accurate sensitivity estimators for wide classes of default models can help analysts better measure and control portfolio credit risk, which has become more and more important in the wake of the current global financial crisis.

Derivative estimation for expectations is a classic problem in Monte Carlo simulation. Besides finite-difference approximations (see, for instance, Glasserman 2004, §7.1), there are three main approaches in the simulation literature: perturbation analysis (PA), the likelihood ratio/score function (LR/SF) method, and weak derivatives (WD). PA was first proposed by Ho and Cao (1983) to study discrete-event systems. It interchanges the order of differentiation and expectation and estimates the expectation of the pathwise derivative (see Glasserman 1991 for a comprehensive introduction). To apply PA, however, the function inside the expectation needs to be stochastically Lipschitz continuous with respect to the parameter of interest.

This greatly limits the applicability of PA because many functions (e.g., indicator functions) are not Lipschitz continuous. Remedies have been proposed to solve this problem. One approach is to apply the conditional Monte Carlo method to smooth the discontinuous function. This method is known as smoothed PA (SPA; see, for instance, Fu and Hu 1997). Instead of differentiating the function inside the expectation, as in PA, the LR method differentiates the probability measure (see, for instance, Glynn 1987, Rubinstein 1989). It does not require that the function inside the expectation be continuous. Therefore, it is generally more applicable than PA. However, LR estimators often have higher variances compared with PA estimators when both are applicable. The WD approach dates back to at least Pflug (1988). It is similar to the LR method, except that it represents the derivative of the measure as the difference of two (new) measures. Then, the derivative becomes the difference of two new expectations that can be estimated using sample means. Recently, the WD approach has been further extended to a more general differentiation approach, known as a measure-valued differentiation (see, for instance, Heidengott et al. 2010). Like the LR method, the WD approach is generally more applicable than PA, but it often yields estimators with larger variance. Unlike PA and the LR method, additional simulations may be necessary to implement WD estimators. For more comprehensive reviews of the different methods for estimating derivatives, readers are referred to L’Ecuyer (1991) and Fu (2008).

Although most derivative estimation approaches were proposed to analyze dynamic systems, such as queuing systems, some were also applied to financial applications. Fu and Hu (1995) and Broadie and Glasserman (1996) are among the early works that use Monte Carlo methods to estimate the price sensitivities of financial options. The same problem has also been studied by combining Malliavin calculus and the Monte Carlo method (see, for instance, Bernis et al. 2003). Chen and Glasserman (2007) show that the Malliavin calculus approach can be viewed as a combination of PA and LR methods. Sensitivities of risk measures, such as value-at-risk (VaR) and conditional VaR (CVaR), have also been studied recently by Hong (2009), Hong and Liu (2009), and Fu et al. (2009). Estimating price sensitivities for portfolio credit derivatives, which is closely related to our work, has also been studied. Joshi and Kainth (2004) consider the nth-to-default credit swaps under the Gaussian copula model of Li (2000). Chan and Joshi (2013) derive finite proxy schemes, which can be viewed as a combination of the path-wise and LR methods, to study the Greeks when the payoff function may be discontinuous. Chen and Glasserman (2008) generalize the problem and
considered different types of portfolio credit derivatives. They use both the LR method and SPA. There is some overlap between the problems we study in this paper and those studied by Chen and Glasserman (2008). First, if we consider only idiosyncratic parameters, their LR method is applicable to our problem. Second, if we consider only idiosyncratic parameters with Lipschitz continuous functions, their SPA method is applicable to our problem. In our paper, however, we consider both idiosyncratic and macroeconomic factors and performance functions with general forms, and we focus on the use of path-wise derivatives in the estimation and compare our method with the LR method when applicable. In addition, it is important to note that Chen and Glasserman (2008) also solve problems that do not fit into our framework and thus cannot be solved by our approach. For example, they consider the default credit swaps where the payoffs depend on the order of defaults, which cannot be written in the portfolio loss function specified in this paper. In fact, both Joshi and Kainth (2004) and Chen and Glasserman (2008) arrive at the same pathwise estimator for the default credit swaps, where the first one uses the delta functions and the second uses the smoothing technique. We discuss more about the difference between SPA and our method in §3.4.

In this paper, we consider performance measures that can be written as the expected value of a performance function of the portfolio credit loss, and we are interested in estimating sensitivities of the performance measures with respect to parameters of default models. We make the following contributions. First, we derive a closed-form expression of the sensitivities, which applies to both idiosyncratic and macroeconomic parameters and to functions that may or may not be continuous, and interestingly, we find that the differentiability of the performance measure does not depend on the continuity and differentiability of the performance function. Second, we derive fast and efficient sensitivity estimators for latent variable, Bernoulli mixture, and doubly stochastic models based on the closed-form expression, and we test them through a number of numerical examples. Third, we show that, to estimate a sensitivity, our method can be applied to provide multiple unbiased estimators, although it is difficult to conclude a priori which among them has the smallest variance. This motivates an easy characterization of the optimal linear combination of these estimators. Empirically, the linear weights need to be estimated, and as expected, we see that the resultant estimator performs better than the individual estimators. Last but not least, we can easily generalize our results to estimate the sensitivities of VaR and CVaR when each individual loss is a continuous random variable and some regularity conditions hold (see the supplemental material for more details available online at http://dx.doi.org/10.1287/ijoc.2014.0602).

The rest of the paper is organized as follows. In §2, we derive a closed-form expression of the sensitivities. In §3 we show our method can often yield multiple sample-mean estimators using the conditioning techniques, which makes it attractive and natural to consider a linear combination of the proposed estimators to obtain further improvements with almost no additional cost. We then discuss Monte Carlo estimation of sensitivities under latent variable, Bernoulli mixture, and doubly stochastic models in §4. The numerical results for both our method and LR method are reported in §5, followed by conclusions in §6. Some lengthy discussions and extensions of related work are presented in the supplemental material.

2. General Results

Suppose that there are m obligors in a loan portfolio. We let X_i denote a random variable that determines the default of obligor i. Specifically, obligor i defaults if $X_i < 0$. Note that the dependence between any two obligors, say i and j, can be modeled through the dependence between X_i and X_j. In §4, we show that the latent variable, Bernoulli mixture, and doubly stochastic models of joint default can all be incorporated into this framework. Let l_i denote the loss due to the default of obligor i. Following the literature (e.g., Chen and Glasserman 2008), we assume that l_i are constants for all $i = 1, 2, \ldots, m$. However, our results can be generalized easily to situations where l_i are mutually independent and bounded random variables that are also independent of X_i for all $i, j = 1, 2, \ldots, m$. Then, the portfolio credit loss L can be written as

$$L = \sum_{i=1}^{m} l_i \cdot 1_{[X_i < 0]}.$$

where $1_{[A]}$ is an indicator function that equals 1 when A is true and 0 otherwise.

Let $p = E[g(L)]$ denote the performance measure that we are interested in, where $g(\cdot)$ denotes the performance function. Note that L is a discrete random variable taking values in a finite set within $[0, \sum_{i=1}^{m} l_i]$. If $g(x) < \infty$ for every $x \in [0, \sum_{i=1}^{m} l_i]$, then $E[g(L)] < \infty$. Many performance measures of portfolio credit loss can be written in this form. When $g(L) = L^2$, p is the second moment of L. It can be used to compute the variance of L, which is an important measure of risk. When $g(L) = 1_{[L \geq y]}$, p is the probability of having a large loss beyond a given threshold y. It is also an important measure of risk, and can be used to compute the portfolio VaR. When $g(L) = L \cdot 1_{[L \geq y]}$, p is the average loss beyond a given threshold y. It is again an important measure of risk and is closely related to the concept of tail conditional expectation. When
We consider the first situation a special case of the (2010) on the sensitivity of a probability function.

If \(K \hat{1} (\text{w.p.} 1) \) at any open neighborhood of \(\hat{1} \), it is a continuous random variable at any \(X \). Let \(\psi(\theta, t) = E[X(\theta)] \) be a parameter of the model of joint defaults—i.e., \(X_i = X(\theta) \) for all \(i = 1, \ldots, m \). If \(\theta \) is an idiosyncratic parameter, then it only affects one of the \(X_i \)s. If \(\theta \) is a macroeconomic factor, then it affects all \(X_i \). In this paper, we do not differentiate these two situations. We consider the first situation a special case of the second. Then, the loss \(L = L(\theta) \) and \(p(\theta) = E[g(L(\theta))] \) are both functions of \(\theta \). Our goal is to estimate \(p'(\theta) \) through a Monte Carlo method. For the work on estimating \(p \) itself, especially when \(p \) is a measure of credit risk, readers are referred to Artzner et al. (1999) and Glasserman (2004, §9) for a comprehensive introduction to risk measures.

We suppose that \(\nu(A) = E[X; Y \in A] \) is absolutely continuous with respect to the Lebesgue measure and let \(E[X; Y = t] \) denote the associated density evaluated at \(t \), then

\[
E[X; Y \in A] = E[X \cdot 1_{Y \in A}] = \int_A E[X; Y = t] \, dt
\]

for any \(A \subset \Re \), where \(\Re \) is the set of all real numbers. If \((X, Y) \) has a joint density \(f_{X,Y}(\cdot, \cdot) \), recall that

\[
E[X; Y = t] = \int_{-\infty}^{\infty} x f_{X,Y}(x, t) \, dx.
\]

If \(Y \) has a density \(f_Y(\cdot) \), we may write

\[
E[X; Y = t] = f_Y(t) \cdot E[X \mid Y = t].
\]

Furthermore, if \(Y \) has a density \(f_Y(\cdot) \) and \(Y \) is independent of \(X \), then \(E[X; Y = t] = f_Y(t) \cdot E[X] \). In this paper, we need to use the following lemma of Hong and Liu (2010) on the sensitivity of a probability function.

Lemma 1 (Hong and Liu 2010). Suppose that \(X(\theta) \) is a continuous random variable at any \(\theta \) in \(\Re(\theta) \), an open neighborhood of \(\theta_0 \), it is differentiable with probability 1 (w.p.1) at any \(\theta \in \Re(\theta_0) \), and there exists a random variable \(\Re \) with \(E[\Re] < \infty \) such that \(|X(\theta_0 + \Delta \theta) - X(\theta_0)| \leq \Re \cdot |\Delta \theta| \) for any \(\Delta \theta \) that is close enough to 0. Let \(\psi(\theta, t) = E[X(\theta); X(\theta) = t] \). If \(\psi(\theta, t) \) is continuous at \((\theta_0, 0) \), then

\[
\frac{d}{d \theta} \Pr[X(\theta_0) < 0] = -E[X(\theta_0); X(\theta_0) = 0].
\]

Given Lemma 1, we can prove the following corollary, which may be viewed as an extension or generalization of the lemma.

Corollary 1. Suppose that, for any \(i = 1, \ldots, k \), \(X_i(\theta) \) is differentiable w.p.1 at any \(\theta \in \Re(\theta_0) \), and there exists a random variable \(\Re \) with \(E[\Re] < \infty \) such that \(|X_i(\theta_0 + \Delta \theta) - X_i(\theta_0)| \leq \Re \cdot |\Delta \theta| \) for any \(\Delta \theta \) that is close enough to 0. We further suppose that \(X_i(\theta) \) are continuous random variables such that \(\Pr(X_i(\theta) = X_i(\theta_0)) = 0 \) at any fixed \(\theta \in \Re(\theta_0) \). Let \(\psi_i(\theta, t) = E[X_i(\theta)] \prod_{j=1; j \neq i}^{k} 1_{[X_j(\theta) < 0]} \cdot X_i(\theta_0) = 0 \). If \(\psi_i(\theta, t) \), \(i = 1, \ldots, k \), are continuous at \((\theta_0, 0) \), then

\[
\frac{d}{d \theta} \Pr[X_i(\theta_0) < 0] = -\sum_{j=1}^{k} E[X_i(\theta_0) \prod_{j=1; j \neq i}^{k} 1_{[X_j(\theta) < 0]}] \cdot X_i(\theta_0) = 0.
\]

The proof of Corollary 1 is available in the supplemental material.

Theorem 1. Let \(p(\theta) = E[g(L)] \), where \(g(\cdot) \) is a general \(\Re \)-valued function and \(L = \sum_{i=1}^{m} L_i \cdot 1_{[X_i < 0]} \) with constant \(l_i \) and random variables \(X_i, i = 1, 2, \ldots, m \). Let \(\Theta \) be an open subset of \(\Re \). Suppose that, for any \(\theta \in \Theta \) and any \(i = 1, \ldots, m \),

1. \(X_i(\theta) \) is differentiable w.p.1 and there exists a random variable \(\Re \), which may depend on \(\theta \), such that \(E[\Re] < \infty \) and \(|X_i(\theta + \Delta \theta) - X_i(\theta)| \leq \Re \cdot |\Delta \theta| \) when \(|\Delta \theta| \) is close enough to zero;
2. \(X_i(\theta) \) is a continuous random variable and \(\Pr(X_i(\theta) = X_i(\theta_0)) = 0 \) for all \(j \neq i \); and
3. \(\psi_i(\theta, y) \) is continuous at \((\theta, 0) \) for any \(a_j = 0 \) or 1, where

\[
\psi_i(\theta, y) = E[X_i(\theta) \prod_{j=1; j \neq i}^{k} 1_{[X_j(\theta) < y]}].
\]

Then, for any \(\theta \in \Theta \),

\[
p'(\theta) = -\sum_{i=1}^{m} E[(g(L_i + l_i) - g(L_i)) \cdot X_i(\theta); X_i = 0],
\]

where \(L_{-i} = \sum_{j=1; j \neq i}^{m} l_j \cdot 1_{[X_j < 0]} \).

Remark 1. Note that the conditions in Theorem 1 are essentially used to ensure that Corollary 1 can be applied to derive Equation (6). In §§3 and 4, we show that these conditions can be verified easily and are typically satisfied by latent variable, Bernoulli mixture, and doubly stochastic models.

The proof of Theorem 1 is deferred to the end of this section. It is interesting to see that the conclusion of Theorem 1 does not depend on the continuity and differentiability of \(g(\cdot) \). This differs from most of the PA literature, which often requires that the performance function be differentiable almost surely and Lipschitz continuous. Although the result is counterintuitive, it can be explained by Equation (5) as later shown in the
proof, which implies that the value of \(g(L) \) is no longer affected by \(\theta \) once the values of all indicator functions are given.

Equation (3) provides a sample-mean estimator with the \(n^{-1/2} \) rate of convergence. By analyzing the structures of different default models in §§3 and 4, we can transform the conditional expectations in Equation (3) to regular expectations, which yields multiple sample-mean estimators. We show that, in §§3 and 4, this task can be done easily based on the conclusion of Theorem 1 for latent variable models, Bernoulli mixture models, and doubly stochastic models.

From Equation (3), it is clear that the computational complexity of \(p'(\theta) \) for this general form depends on whether the parameter \(\theta \) is idiosyncratic or macroeconomic. If \(\theta \) is an idiosyncratic parameter with respect to a particular obligor \(i \), then \(p'(\theta) \) in Equation (3) can be simplified to

\[
p'(\theta) = -E[\{g(L_{i-1} + l_i) - g(L_{i-1})\} \cdot X_i(\theta); X_i = 0],
\]

which may reduce the complexity. Moreover, the computational complexity of \(p'(\theta) \) also depends on that of computing \(X_i \) and \(X_i(\theta) \) in Equation (3), which has model-dependent, closed-form expressions. Therefore, we discuss more about this issue with respect to different models studied in §§3 and 4. Readers may be referred to Hong and Liu (2010) for more discussion on the kernel method.

In §4, we compare our method with the kernel method as well as the LR method. For convenience, we derive a general formula of the LR estimator for the performance measure function considered in this paper. Recall that \(p(\theta) = E[g(L(\theta))] \). Suppose \(\theta \) can be written as a distributional parameter. Then,

\[
p(\theta) = \int_{Y_0} g(L(y)) \cdot f(y, \theta) dy,
\]

where \(f(y, \theta) \) is the density function that also involves the parameter \(\theta \). Then,

\[
p'(\theta) = \int_{Y_0} g(L(y)) \cdot \frac{\partial}{\partial \theta} f(y, \theta) \cdot f(y, \theta) dy = E[g(L) \cdot SF],
\]

where \(SF = (d/d\theta) \log(f(\cdot, \theta))|_{\theta=\theta_0} \).

One straightforward advantage of the LR estimator is that it takes a simple closed-form expression and may be easily obtained when the LR method is applicable (e.g., \(\theta \) can be written into some density function as a distributional parameter). However, when \(\theta \) is a structural parameter rather than a distributional parameter, we may need the assumption that \(g(L(\theta)) \) is differentiable w.p.1, which may not hold in this paper. Rubinstein (1992) developed the so-called “push-out” method to handle this difficulty. Readers may refer to Asmussen and Glynn (2007) for a detailed discussion about the LR method.

We now prove Theorem 1.

Proof of Theorem 1. In the following analysis, we suppress the dependence of \(X_i \) on \(\theta \) at places for presentation convenience. To analyze \(p'(\theta) \), we view \(1_{[X_i = 0]} \) as a Bernoulli random variable and consider all combinations of \(1_{[X_i = 0]} \), \(i = 1, \ldots, m \). Let \(B_i = 1_{[X_i = 0]} \) and \(B = (B_1, \ldots, B_m) \). Because \(B \in \{0, 1\}^m \) with totally \(2^m \) elements. For each element \(s \in S(m) \), we let \(s^1 \) denote the set of obligors where \(B_i = 1 \) and \(s^0 \) denote the set of obligors where \(B_i = 0 \). For instance, for \(s = (1, 0, 1, 0) \in S(4) \), \(s^1 = \{1, 3\} \), and \(s^0 = \{2, 4\} \). Note that

\[
1_{[B=s]} = \prod_{i \in s^1} 1_{[X_i = 0]} \prod_{i \in s^0} 1_{[X_i = 0]}.
\]
Then,
\[
p(\theta) = E[g(L)] = \sum_{s \in S(m)} E \left[g \left(\sum_{i=1}^{m} l_i \cdot 1_{[X_i < 0]} \right) \cdot 1_{[B=s]} \right] \\
= \sum_{s \in S(m)} g \left(\sum_{i=1}^{m} l_i \right) \cdot E \left[\prod_{i \in s^1} 1_{[X_i < 0]} \prod_{i \in s^0} 1_{[X_i \geq 0]} \right]. \tag{5}
\]

Note that when \(l_i \) are random variables that are independent of \(X_i \) for all \(i, j = 1, 2, \ldots, m \), Equation (5) can be written as
\[
p(\theta) = \sum_{s \in S(m)} E \left[g \left(\sum_{i=1}^{m} l_i \cdot 1_{[X_i < 0]} \right) \cdot 1_{[B=s]} \right] |_{l_i, i = 1, 2, \ldots, m}.
\]

The conditional expectation techniques can be applied throughout the following derivations. To simplify the presentation, however, we assume that \(l_i \) are constants for all \(i = 1, 2, \ldots, m \) throughout §2-5. Under the conditions in Theorem 1, we can apply Corollary 1 to Equation (5) and have:
\[
p'(\theta) = \sum_{s \in S(m)} \frac{d}{d\theta} \left[g \left(\sum_{i=1}^{m} l_i \cdot 1_{[X_i < 0]} \right) \cdot 1_{[B=s]} \right] \\
= -\sum_{s \in S(m)} g \left(\sum_{i=1}^{m} l_i \right) \\
\cdot \left\{ \sum_{i \in s^1} E \left[X'_i(\theta) \prod_{j \in s^1, j \neq i} 1_{[X_j < 0]} \prod_{j \in s^0} 1_{[X_j \geq 0]} \right] |_{X_i = 0} \right\} \\
- \sum_{s \in S(m)} g \left(\sum_{i=1}^{m} l_i \right) \\
\cdot \left\{ \sum_{i \in s^0} E \left[X'_i(\theta) \prod_{j \in s^0, j \neq i} 1_{[X_j < 0]} \prod_{j \in s^1} 1_{[X_j \geq 0]} \right] |_{X_i = 0} \right\}. \tag{6}
\]

By Equation (6), it is clear that we can write \(p'(\theta) = \sum_{m \geq 1} \Psi_m \), where \(\Psi_m = E[A \cdot X'_i(\theta); X_i = 0] \) for some \(A_i \). Without loss of generality, we consider \(\Psi_m \). Note that
\[
S(m) = [S(m-1) \times \{1\}] \cup [S(m-1) \times \{0\}],
\]
where \(B_m = 1 \) in the first set and \(B_m = 0 \) in the second set. Then, by Equation (6), we have:
\[
\Psi_m = -\sum_{s \in S(m-1) \times \{1\}} E \left[X'_m(\theta) \prod_{j \in s^1, j \neq m} 1_{[X_j < 0]} \right] \\
\cdot \left[\prod_{j \in s^0} 1_{[X_j \geq 0]} \right] |_{X_m = 0} \right\} \\
+ \sum_{s \in S(m-1) \times \{0\}} g \left(\sum_{i \in s^1} l_i \right) \\
\cdot \left\{ \sum_{i \in s^0} E \left[X'_m(\theta) \prod_{j \in s^0, j \neq m} 1_{[X_j < 0]} \prod_{j \in s^1} 1_{[X_j \geq 0]} \right] |_{X_m = 0} \right\} \\
= -\sum_{s \in S(m-1)} \left[g \left(\sum_{i \in s^1} l_i + l_m \right) - g \left(\sum_{i \in s^1} l_i \right) \right] \\
\cdot \left[\sum_{i \in s^0} E \left[X'_m(\theta) \prod_{j \in s^0, j \neq m} 1_{[X_j < 0]} \prod_{j \in s^1} 1_{[X_j \geq 0]} \right] |_{X_m = 0} \right],
\]
where \(s \) has \(m \) elements in the first equation and \(s \) has \(m-1 \) elements in the second equation. Recall the definitions of \(s^1 \) and \(s^0 \) for \(S(m-1) \). Then, by an analog to Equation (5), we have:
\[
\Psi_m = -\sum_{s \in S(m-1)} \left[g \left(\sum_{j=1}^{m-1} l_j \cdot 1_{[X_j < 0]} \right) + g \left(\sum_{j=1}^{m-1} l_j \cdot 1_{[X_j < 0]} \right) \right] \\
\cdot X'_m(\theta) \cdot 1_{[B=s]} | X_m = 0 \right\} \\
= -\left[g \left(\sum_{j=1}^{m-1} l_j \cdot 1_{[X_j < 0]} + l_m \right) - g \left(\sum_{j=1}^{m-1} l_j \cdot 1_{[X_j < 0]} \right) \right] \\
\cdot X'_m(\theta) | X_m = 0 \right\}.
\]

To simplify the notation, we let
\[
L_{-i} = \sum_{j=1}^{m} l_j \cdot 1_{[X_j < 0]}
\]
for all \(i = 1, \ldots, m \), which is the portfolio loss without obligor \(i \). Then,
\[
\Psi_m = -E \left[g(L_{-m} + l_m) - g(L_{-m}) \right] \cdot X'_m(\theta) | X_m = 0 \right\}.
\]

By the symmetry of \(m \) and any \(i = 1, \ldots, m-1 \) and by Equation (6), we have:
\[
p'(\theta) = -\sum_{i=1}^{m} E \left[g(L_{-i} + l_i) - g(L_{-i}) \right] \cdot X'_i(\theta) | X_i = 0 \right\}.
\]

Therefore, we conclude the proof of Theorem 1.

Remark 2. In the proof, we first transform the regular summation term into a combinatorial form, which facilitates interchanging the order between the differential operator and summation. Moreover, the final expression is written back in a regular summation form rather than a combinatorial one, which can reduce the computational complexity significantly.

3. Multiple Estimators and Optimal Linear Combination

In this section, we demonstrate the advantages of Equation (3), which for many practically important models, yields multiple sample-mean estimators. Among these estimators, it may be difficult to identify the best one in advance. This then motivates us to consider an optimal linear combination of these estimators. The weights of this estimator are empirically estimated, leading to some estimation bias. However, we note that the resultant estimator is often more efficient and always at least as good as the best one. In this section, we also compare and contrast the proposed method to the SPA method.

We first provide a general framework of developing estimators for \(p'(\theta) \) by applying conditioning techniques on both idiosyncratic and macroeconomic factors.
3.1. Conditioning on Idiosyncratic Factors
Let \(\epsilon_i \) be an idiosyncratic factor that affects only obligor \(i \) and is not a function of \(\theta \), and let \(T_i \) denote a random variable that characterizes all other random factors of obligor \(i \). Note that \(\epsilon_i \) and \(T_i \) are independent of each other, and \(T_i = T_i(\theta) \) is a function of \(\theta \). The default condition of obligor \(i \) is defined as \(\{ \epsilon_i < T_i \} \). Suppose we write \(X_i(\theta) = \epsilon_i - T_i(\theta) \). Then, \(X_i(\theta) = -T_i(\theta) \), and obligor \(i \) defaults if \(X_i < 0 \). Let \(f_\epsilon(\cdot) \) denote the probability density function of \(\epsilon_i \). To ensure that conditions 1–3 of Theorem 1 hold, we require the following conditions on \(\epsilon_i \) and \(T_i \):

(a1) \(T_i(\theta) \) is continuously differentiable w.p.1, and there exists a random variable \(K_{\epsilon} \) which may depend on \(\theta \), such that \(E[K_{\epsilon}] < \infty \) and \(|T_i(\theta + \Delta \theta) - T_i(\theta)| \leq K_{\epsilon}|\Delta \theta| \) when \(|\Delta \theta| \) is close enough to zero.

(a2) \(T_i(\theta) \) is a continuous random variable.

(a3) \(f_\epsilon(\cdot) \) is continuous a.s., and there exists a constant \(B_i > 0 \) such that \(f_\epsilon(\cdot) \) is bounded from above by \(B_i \).

Then by Theorem 1, Equation (3) can be further derived as

\[
p'(\theta) = -\sum_{i=1}^{m} E\left[(g(L_{-i} + l_i) - g(L_{-i})) \cdot X'_i(\theta); X_i = 0 \right]
= \sum_{i=1}^{m} E\left[(g(L_{-i} + l_i) - g(L_{-i})) \cdot T_i'(\theta); \epsilon_i = T_i \right]
= \sum_{i=1}^{m} E\left[(g(L_{-i} + l_i) - g(L_{-i})) \cdot T_i'(\theta) \cdot f_\epsilon(T_i) \right].
\] (7)

Verification of conditions (a1)–(a3) is shown in the supplemental material.

3.2. Conditioning on Macroeconomic Factors
Unless explicitly stated, \(\theta \) refers to a macroeconomic parameter in this section. Let \(A \) be a common random factor (e.g., a macroeconomic factor) that affects all obligors and is not a function of \(\theta \), and let \(B \) denote a vector that includes all random variables in the system other than \(A \). Note that \(B = B(\theta) \) is a function of \(\theta \). Suppose that we may write \(X_i(\theta) = A - \beta_i, \) where \(\beta_i = \beta_i(B) \) is a function of \(B \) and, thus, also a function of \(\theta \). For presentation convenience, we suppress the dependence of \(X_i \) and \(\beta \) on \(\theta \) at places where there is no ambiguity. Then, \(X_i = A - \beta_i \) and \(X'_i(\theta) = -\beta'_i(\theta) \).

Note that \(A = \beta_i \) when \(X_i = 0 \). Then, \(X_i = \beta_i - \beta_j \) and the obligor \(j \) defaults if \(\beta_i < \beta_j \). This motivates us to define \(\mathcal{L}_{-i} = \sum_{j=1, j \neq i}^{m} \mathcal{T}_j[\beta_j < \beta_i] \). Then,

\[
p'(\theta) = -\sum_{i=1}^{m} E\left[(g(L_{-i} + l_i) - g(L_{-i})) \cdot X'_i(\theta); X_i = 0 \right]
= \sum_{i=1}^{m} E\left[(g(L_{-i} + l_i) - g(L_{-i})) \cdot \beta'_i(\theta); A = \beta_i \right]
= \sum_{i=1}^{m} E\left[E\left[(g(L_{-i} + l_i) - g(L_{-i})) \cdot \beta'_i(\theta); A = \beta_i \mid B \right] \right]
= \sum_{i=1}^{m} \sum_{j=1, j \neq i}^{m} \sum_{\beta_j < \beta_i}^{m} \beta'_i(\theta) \cdot f_{A|B}(\beta_i),
\] (8)

where \(f_{A|B}(\cdot) \) is the conditional density of \(A \) conditioned on \(B \). Furthermore, if \(A \) and \(B \) are mutually independent, then

\[
p'(\theta) = \sum_{i=1}^{m} \sum_{\beta_j < \beta_i}^{m} \beta'_i(\theta) \cdot f_{A}(\beta_i).
\]

The difference between \(L_{-i} \) in Equation (7) and \(\mathcal{L}_{-i} \) in Equation (8) may lead to different computational complexities of \(p'(\theta) \). For each \(i \), computing \(L_{-i} \) is in the same order, \(O(m) \), as computing \(\mathcal{L}_{-i} \). Then, the complexity of \(p'(\theta) \) becomes \(O(m^2) \). However, because \(L_{-i} = L - I_{X_i < 0} \), the complexity of computing \(L_{-i} \) can be reduced to \(O(1) \) if \(L \) is computed in advance and that of \(p'(\theta) \) using Equation (7) can be reduced to \(O(m) \). On the other hand, we cannot apply this trick to \(\mathcal{L}_{-i} \), but we may first sort \(\beta_1, \beta_2, \ldots, \beta_m \) to achieve the order of \(O(m \log(m)) \) as computing \(p'(\theta) \) using Equation (8). This finding suggests that conditioning on idiosyncratic factors (yielding \(L_{-i} \)) may provide better estimators compared with conditioning on macroeconomic factors (yielding \(\mathcal{L}_{-i} \)) in terms of the computational complexity. When estimating sensitivities with respect to an idiosyncratic parameter, the computational complexities of different estimators obtained by conditioning on various random variables seems in the same order, \(O(m) \). In fact, it appears difficult to identify which estimator is the best, which could be model-dependent, and this motivates us to consider a linear combination of all available estimators.

3.3. Optimal Combination of Multiple Estimators
As mentioned earlier, the proposed method can often provide multiple sample-mean estimators, but we may not be able to identify in advance which is the best in terms of a low variance. This motivates developing an optimal minimum variance linear combination of these estimators.

Let \(\{ \gamma_1, \ldots, \gamma_n \} \) denote an i.i.d. sample of \(\gamma = (\gamma_1, \ldots, \gamma_n) \). For each \(\ell \), \(\gamma_{1\ell}, \ldots, \gamma_{n\ell} \) are computed from the same simulation run; thus they are mutually dependent. Assuming \(\tilde{\gamma} = (1/n) \sum_{\ell=1}^{n} \gamma_{1\ell} \) then \(\tilde{\gamma} = (\tilde{\gamma}_1, \ldots, \tilde{\gamma}_n) \) are \(k \) mutually dependent unbiased sample-mean estimators of \(\gamma \). Let \(w = (w_1, \ldots, w_n) \) be a vector of weights and \(\tilde{\gamma} = w' \tilde{\gamma} \). For any constant weight vector \(w \), \(\tilde{\gamma} \) is an unbiased estimator of \(\gamma \) if \(w'1 = 1 \), where \(1 \) is a \(k \)-dimensional vector with all elements being 1. Our goal is to select a \(w \) that minimizes the variance of \(\tilde{\gamma} \).

Let \(\Sigma \) denote the covariance matrix of \(\tilde{\gamma} \). We assume that \(\Sigma \) is positive-definite—i.e., none of the \(k \) estimator
\(\tilde{\gamma}_1, \ldots, \tilde{\gamma}_k \) can be written as a linear combination of the other \(k-1 \) estimators. Then \(\text{Var}(\tilde{\gamma}) = \text{Var}(\mathbf{w}^* \tilde{\gamma}) = \mathbf{w}^* \Sigma \mathbf{w} \). Therefore, we want to find a \(\mathbf{w} \) that solves the following optimization problem:

\[
\begin{align*}
\text{minimize} & \quad \mathbf{w}^* \Sigma \mathbf{w} \\
\text{subject to} & \quad \mathbf{w}^* \mathbf{1} = 1.
\end{align*}
\] (9)

By using the Lagrange relaxation approach, we can find the optimal solution of problem (9) is

\[
\mathbf{w}^* = (\mathbf{1}^* \Sigma^{-1} \mathbf{1})^{-1} \Sigma^{-1} \mathbf{1}.
\]

In practice, however, \(\Sigma \) is unknown. Therefore, \(\Sigma \) and \(\mathbf{w}^* \) can only be estimated. Because \(\gamma_\ell \), across \(\ell = 1, 2, \ldots, n \) are i.i.d., then an unbiased and strongly consistent estimator of \(\Sigma \) is

\[
\hat{\Sigma} = \frac{1}{n(n-1)} \sum_{i=1}^{n} (\gamma_i - \bar{\gamma})(\gamma_i - \bar{\gamma})'.
\]

Then we may estimate \(\mathbf{w}^* \) by

\[
\hat{\mathbf{w}}^* = (\mathbf{1}^* \hat{\Sigma}^{-1} \mathbf{1})^{-1} \hat{\Sigma}^{-1} \mathbf{1}.
\]

Therefore, we may use \(\hat{\gamma} = \hat{\mathbf{w}}^* \hat{\gamma} \) as the estimator of \(\gamma \) and it is strongly consistent because of the continuous mapping theorem (Durrett 2005). However, \(\hat{\gamma} \) is no longer unbiased because of the dependence between \(\hat{\mathbf{w}}^* \) and \(\hat{\gamma} \). If an unbiased estimator is necessary, one may estimate \(\mathbf{w}^* \) using a pilot simulation, i.e., a small number of additional simulation runs that are only used to estimate \(\mathbf{w}^* \), so that \(\hat{\mathbf{w}}^* \) and \(\hat{\gamma} \) can be independent.

It is worthwhile pointing out that, from the numerical results in §5, the resultant estimator obtained above (called the “combined estimator” in §5) does not always perform significantly better than the best among all multiple estimators. In that case, instead of the optimal linear combination method, we also suggest a two-phase simulation where one quickly finds the best design using a pilot simulation and then generates sample only from that design to get an unbiased estimator. Nevertheless, the yield of multiple estimators is a natural consequence of our proposed method, and efficiently using these estimators is the motivation behind applying either a linear combination or a two-phase simulation.

3.4. Connections to SPA Method

As is apparent, the estimators we derive above are based on conditioning techniques. Indeed, the second step of this method can also be generalized to the work of Hong and Liu (2010) and Liu and Hong (2011), which derive the closed-form expressions (similar to the result in Equation (3)) and then use kernel estimators to estimate the sensitivities of probability functions and option prices, to obtain estimators with faster rates of convergence.

SPA is another two-step conditional Monte Carlo method for estimating sensitivities of expected-value functions (see, for instance, Fu and Hu 1997 for general discussions and Chen and Glasserman 2008 for applications in credit risk management). However, unlike our approach, it conditions in the first step to smooth the function inside of the expectation and differentiates the expectation in the second step. (See Figure 1 for an illustration of the two approaches.) We believe that our method has several advantages compared with SPA. First, it gives a closed-form expression of the sensitivity in the first step, e.g., Equation (3), which is independent of specific models. This expression provides insights on the problem itself regardless of the model, and it can also be used to develop kernel estimators, e.g., the one in Equation (4), which is model-independent and can be applied easily. Second, our approach makes conditioning on different random variables easier. Once the closed-form expression of the sensitivity is given, it is often straightforward to decide what to condition on and to develop multiple estimators, as demonstrated in §4 later. For SPA, however, one has to see through both steps (conditioning and differentiation) to decide what to condition on, and therefore, it is often more difficult to apply and to develop multiple estimators. Note that both our method and the SPA method can be viewed as different approaches to achieving similar (possibly the same) estimators under a two-step conditional Monte Carlo framework. (See an example of latent variable models in the supplemental material for an illustration.)
4. Applications to Three Classes of Models

In this section, we apply the results of Theorem 1 to three classes of widely used credit models, latent variable models, Bernoulli mixture models, and doubly stochastic models to derive sensitivity estimators that are in general more efficient than the kernel estimators. Specifically, we directly apply both Equations (7) and (8) to develop multiple estimators of \(p'(\theta) \) for all three models of joint defaults. Because the choices of \(A \) and \(B \) depend on specific models, we illustrate our idea by working on specific examples with respect to particular parameters when applying Equation (8).

4.1. Latent Variable Models

We first consider latent variable models where obligor \(i \) defaults if a latent variable \(Y_i \) is below a threshold \(d_i \). Merton (1974) considered a one-period model, where \(Y_i \) denotes the value of the obligor one period later, and \(d_i \) denotes the promised debt at that time. The obligor defaults if it fails to pay the coupon, i.e., \(Y_i < d_i \). By introducing dependence among \(Y_i \), \(i = 1, \ldots, m \), the model can be used to model joint defaults. We now introduce several examples of commonly used latent variable models.

Example 1 (CreditMetrics and KMV Models). As introduced in Frey and McNeil (2003), both CreditMetrics and KMV models assume that

\[
Y_i = \alpha_i \Gamma + \sigma_i \epsilon_i + \nu_i, \quad i = 1, \ldots, m, \tag{10}
\]

where \(\alpha_i = (\alpha_{i1}, \ldots, \alpha_{ip}) \) with \(p < m \), \(\Gamma = (\Gamma_1, \ldots, \Gamma_p)^T \) follows a multivariate normal distribution with mean vector \(0 \) and covariance matrix \(\Omega \), \(\epsilon_i \) are independent standard normally distributed random variables, and \(\nu_i \) is the mean value of \(Y_i \). In this model, the random vector \(\Gamma \) represents the macroeconomic factors and the random variable \(\epsilon_i \) represents obligor \(i \)'s idiosyncratic risk factor. Then, the dependence between \(Y_i \) and \(Y_i \) is modeled by their dependence on the common macroeconomic factors. Let \(A = (\alpha_1, \ldots, \alpha_m)^T \) and \(\Omega \). Therefore, the covariance matrix of \((Y_1, \ldots, Y_m)\) is \(A \Omega A' + \text{diag}(\sigma_1^2, \ldots, \sigma_m^2) \).

Example 2 (The Model of Li 2000). Let \(T_i \) denote the default time of obligor \(i \). We assume that the distribution function of \(T_i \) is \(F_i \), which is typically an exponential distribution with rate \(\lambda_i \), i.e., \(F_i(t) = 1 - \exp(-\lambda_i t) \). Then, a loss will be incurred if the obligor defaults before the predetermined time \(T_i \), i.e., \(T_i < T \). Let \(\Phi \) denote the standard normal distribution function. Then, \(\{T_i < T\} \) is equivalent to \(\{\Phi^{-1}(F_i(T_i)) \leq \Phi^{-1}(F_i(T))\} \). Let \(Z_i = \Phi^{-1}(F_i(T_i)) \). Note that \(Z_i \) follows a standard normal distribution. In this model, \(Z_i \) is often modeled as \(Z_i = (Y_i - E(Y_i))/\sqrt{\text{Var}(Y_i)} \), where \(E(Y_i) \) is defined in Equation (10), \(E(Y_i) = \sum_{i=1}^{m} a_i \mu_i + \nu_i \), and \(\text{Var}(Y_i) = a_i \Omega a_i' + \sigma_i^2 \). Let \(\delta_i = \sqrt{\text{Var}(Y_i)} \cdot \Phi^{-1}(F_i(T)) + E(Y_i) \). Then, \(\{T_i < T\} \) is equivalent to \(\{Y_i < d_i\} \).

Both Examples 1 and 2 are known as Gaussian copula models because \(Y = (Y_1, \ldots, Y_m)^T \) follows a multivariate normal distribution. For Examples 1 and 2, for instance, \(\epsilon_i \) is a standard normal random variable and \(\Gamma_i = (d_i - \alpha_i \Gamma - \nu_i)/\sigma_i \). Equation (7) provides an efficient approach to estimating \(p'(\theta) \).

To illustrate how to apply Equation (8) to Gaussian copula models, we consider the following specific parameters. Suppose that \(d_i \) is a function of a parameter \(\lambda_i \), i.e., \(d_i = d_i(\lambda_i) \). (as in Example 2), and we are interested in estimating \(p'(\lambda_i) \) for some \(i = 1, \ldots, m \). When \(p \) is the price of a CDO and \(\lambda_i \) is the default intensity of obligor \(i \), then \(p'(\lambda_i) \) is known as delta (Chen and Glasserman 2008). Without loss of generality, we consider \(p'(\lambda_i) \).

Let \(A = \Gamma_i \) for any \(j = 1, \ldots, p \). Without loss of generality, we set \(A = \Gamma_i \). Then, \(\{Y_i < d_i\} \) is equivalent to \(\{A < \beta_i\} \), where \(\beta_i = (1/\alpha_i)[d_i - \sum_{k=1}^{p} a_{ik} \lambda_k - \sigma_i \epsilon_i - \nu_i] \). Let \(Y_i = A - \beta_i \). Then,

\[
\beta_i(\lambda_i) = \begin{cases}
 d_i(\lambda_i) &
 a_{ik},
 i = 1; \\
 0, &
 i = 2, \ldots, m.
\end{cases}
\]

Note that \((\Gamma_1, \ldots, \Gamma_p)^T\) follows a multivariate normal distribution with mean \(\mu \) and covariance matrix \(\Omega \). We let \(\mu_{-i} \) and \(\Omega_{-i} \) denote the mean vector and covariance matrix of \(\Gamma_i (\Gamma_2, \ldots, \Gamma_p)^T \), and let \(\sigma_i^2 = \text{Var}(\Gamma_i) \) and \(\omega_i = (\text{Cov}(\Gamma_1, \Gamma_i), \ldots, \text{Cov}(\Gamma_i, \Gamma_p))^T \). Then, by Bock (1985), \(f_{\Gamma_i|\Gamma_j}(\cdot) \) is the same as the density of a normal random variable with mean \(\mu_i \) and variance \(\sigma_i^2 \), where \(\mu_i = \mu_i + \omega_i \Omega_{-i}(\Gamma_i - \mu_{-i}) \) and \(\sigma_i^2 = \sigma_i^2 - \omega_i \Omega_{-i} \omega_i \).

By Equation (8), we have

\[
p'(\lambda_i) = \mathbb{E}\left\{g(\mathbb{E}_{-i} + l_i) - g(\mathbb{E}_{-i}) \cdot \frac{d_i(\lambda_i)}{a_{11}} \cdot f_{\Gamma_i|\Gamma_j}(\beta_i)\right\}.
\]

Similarly, by setting \(A = \Gamma_2, \ldots, \Gamma_p \), we can also develop another \(p - 1 \) sample-mean estimators of \(p'(\lambda_i) \). Combining with the one given by Equation (7), we now have \(p + 1 \) sample-mean estimators of \(p'(\lambda_i) \).

Example 3 (The Model of Bassamboo et al. 2008). The Gaussian copula models cannot explain well the extremal dependence among obligors that is observed empirically (Mashal and Zeevi 2002), which means that the obligors are more likely to default simultaneously than what the Gaussian copula models predict. Bassamboo et al. (2008) suggested the following single factor model:

\[
Y_i = \rho Z_i + \sqrt{1 - \rho^2} \epsilon_i, \quad i = 1, 2, \ldots, m,
\]

where \(Z \) denotes the common factor that affects all obligors, \(\epsilon_i \) denotes obligor \(i \)'s idiosyncratic risk, \(W \) is a nonnegative random variable that captures a common shock to all obligors, and \(Z, W, \) and \(\epsilon_i \) are mutually...
independent. When \(Z \) and \(\varepsilon \), are independent normal random variables and \(W = 1 \), the model becomes the one-factor Gaussian copula model. When \(W \) is a random variable, a small \(W \) value will create a common shock to all obligors and cause many of them to default simultaneously. Bassamboo et al. (2008) show that the model can explain extremal credit risk when \(W \) or \(W^2 \) follows a Gamma distribution. Specifically, when \(W^2 \) follows a chi-square distribution, \(Y_t \) follows a \(t \) distribution and the model is also known as a \(t \)-copula model (Embrechts et al. 2003).

Suppose that \(W = \theta \varepsilon \), where \(\varepsilon \) is an exponential random variable with the mean equal to 1 and \(\theta \) is the mean of \(W \). Suppose that we are interested in estimating \(p'(\theta) \), which is the sensitivity of the portfolio credit risk to the average shock size.

By letting \(\varepsilon_t \) be a standard normal random variable and \(Y_t = (d_i \theta \varepsilon - \rho Z)/\sqrt{1 - \rho^2} \), Equation (7) yields the following estimator:

\[
p'(\theta) = \sum_{i=1}^{m} \mathbb{E} \left[(g(L_{-i} + l) - g(L_{-i} \varepsilon)) \cdot \beta_i \cdot f_{\varepsilon}(\varepsilon) \right].
\]

(11)

Besides the estimator in Equation (11), we can also apply Equation (8) to develop two other estimators. Note that threshold \(d_i \) could be positive or negative, depending on the parameter settings in \(Y_t \). To be consistent with the numerical test in §5.1, we assume \(d_i \) to be negative.

First, we let \(A = \varepsilon \) and \(\beta_i = (\rho Z + \sqrt{1 - \rho^2} \varepsilon_i)/(\theta d_i) \). Then, \(Y_t = (d_i \theta \varepsilon - \rho Z)/\sqrt{1 - \rho^2} \), Equation (7) yields:

\[
p'(\theta) = -\sum_{i=1}^{m} \mathbb{E} \left[(g(L_{-i} + l) - g(L_{-i} \varepsilon)) \cdot \beta_i \cdot f_{\varepsilon}(\varepsilon) \right].
\]

(12)

Second, we let \(A = Z \). Similarly, we have \(\beta_i = (\theta d_i \varepsilon - \sqrt{1 - \rho^2} \varepsilon_i)/\rho \) and \(\beta_i(\theta) = (d_i \varepsilon)/\rho \). Let \(f_{\varepsilon}(\cdot) \) denote the density of \(\varepsilon \). Then, by Equation (8), we have:

\[
p'(\theta) = -\sum_{i=1}^{m} \mathbb{E} \left[(g(L_{-i} + l) - g(L_{-i} \varepsilon)) \cdot \beta_i \cdot f_{\varepsilon}(\varepsilon) \right].
\]

(13)

Given Equations (11)–(13), we can develop three sample-mean estimators of \(p'(\theta) \) if an i.i.d. sample of \(\{Z, \varepsilon, \varepsilon_1, \ldots, \varepsilon_m\} \) is available. Suppose the i.i.d. sample of \(\{Z, \varepsilon, \varepsilon_1, \ldots, \varepsilon_m\} \) is denoted as \(\{(Z_1, \varepsilon_1, \varepsilon_1, \ldots, \varepsilon_{m1}), \ldots, (Z_n, \varepsilon_n, \varepsilon_{n1}, \ldots, \varepsilon_{nm_n})\} \), the three sample-mean estimators of \(p'(\theta) \) given Equations (11)–(13), respectively, are:

\[
\overline{p}_k(\theta) = \frac{1}{n} \sum_{j=1}^{n} \sum_{i=1}^{m} \left[g(L_{-i,j} + l) - g(L_{-i,j} \varepsilon) \right] \cdot \frac{d_i \varepsilon}{\sqrt{1 - \rho^2}} \cdot f_{\varepsilon}(\varepsilon),
\]

(14)

where

\[
T_{i,j} = (d_i \theta \varepsilon - \rho Z_j)/\sqrt{1 - \rho^2} \quad \text{and}
\]

\[
L_{-i,j} = \sum_{s=1, s\neq i}^{m} l_s \cdot 1_{\{\varepsilon_s < T_{i,j}\}},
\]

and

\[
\overline{p}_{i,j}(\theta) = \frac{1}{n} \sum_{j=1}^{m} \sum_{i=1}^{m} \left[g(L_{-i,j} + l) - g(L_{-i,j} \varepsilon) \right] \cdot \frac{d_i \varepsilon}{\sqrt{1 - \rho^2}} \cdot f_{\varepsilon}(\varepsilon),
\]

(15)

where

\[
\beta_i = (\rho Z_j + \sqrt{1 - \rho^2} \varepsilon_i)/(\theta d_i) \quad \text{and} \quad L_{-i,j} = \sum_{s=1, s\neq i}^{m} l_s.
\]

and

\[
\overline{p}_{i,j}(\theta) = \frac{1}{n} \sum_{j=1}^{m} \sum_{i=1}^{m} \left[g(L_{-i,j} + l) - g(L_{-i,j} \varepsilon) \right] \cdot \frac{d_i \varepsilon}{\sqrt{1 - \rho^2}} \cdot f_{\varepsilon}(\varepsilon),
\]

(16)

where

\[
\beta_i = (\theta d_i \varepsilon - \sqrt{1 - \rho^2} \varepsilon_i)/\rho \quad \text{and}
\]

\[
L_{-i,j} = \sum_{s=1, s\neq i}^{m} l_s \cdot 1_{\{\varepsilon_s < \varepsilon_i\}}.
\]

Because \(p_{i,j}(\theta) = (\rho Z_j + \sqrt{1 - \rho^2} \varepsilon_i)/(\theta d_i) \), and \(L_{-i,j} = \sum_{s=1, s\neq i}^{m} l_s \),

4.2. Bernoulli Mixture Models

Let \(\Gamma = (\Gamma_1, \ldots, \Gamma_p) \) denote a set of common economic factors, where \(p < m \). In Bernoulli mixture models, the default event of obligor \(i \) follows a Bernoulli random variable with a default probability \(Q_i \), \(0 < Q_i < 1 \), and \(Q_i \) is modeled as a function of \(\Gamma \), i.e., \(Q_i = Q_i(\Gamma) \). Furthermore, defaults of all obligors are independent of each other once \(\Gamma \) is given. Therefore, in Bernoulli mixture models, the dependence among all obligors are modeled through their dependence on the common economic factors \(\Gamma \). The following are a few commonly used Bernoulli mixture models.

Example 4 (CreditRisk+ Model). A Bernoulli mixture model is used in CreditRisk+, a financial product developed by Credit-Suisse-Financial-Products. As introduced in Frey and McNeil (2003), CreditRisk+ uses \(Q_i = 1 - e^{-w_i^T \Gamma} \), where \(\Gamma \) is a vector of independent gamma distributed macroeconomics factors and \(w_i = (w_{i,1}, \ldots, w_{i,n}) \) is a vector of positive weights.
Example 5 (Bernoulli Regression Models). In Bernoulli regression models, the individual default probability is modeled as \(Q_i(\Gamma) = q(\Gamma, z_i) \), \(i = 1, \ldots, m \) where \(z_i \) is a deterministic vector. As introduced in Frey and McNeil (2003), a particularly popular choice is

\[
q(\Gamma, z) = h(\mathbf{\alpha}' z, \Gamma + \mathbf{\mu}' z),
\]

where \(h: \mathbb{R} \to (0, 1) \) is a strictly increasing function, \(\mathbf{\mu} \) and \(\mathbf{\alpha} \) are vectors of regression parameters, and \(\mathbf{\alpha}' z > 0 \). As shown in Frey and McNeil (2003), under some specific choices of \(\Gamma \) and \(h(\cdot) \), an individual obligor’s default may follow a probit-normal or logit-normal mixing-distribution.

We consider only the CreditRisk\(^+\) model introduced in Example 4. Suppose that we are interested in estimating \(p'(w_{ij}) \) for some \(i = 1, \ldots, m \) and \(j = 1, \ldots, p \). Without loss of generality, we consider \(p'(w_{ii}) \).

Let \(U_i, i = 1, \ldots, m \), be independent uniform(0,1) random variables that are independent of \(\Gamma_i \), and \(X_i = U_i - Q_i \), where \(Q_i = 1 - \exp(-\sum_{j=1}^{p} w_{ij} \Gamma_i) \). Then, obligor \(i \) defaults if \(X_i < 0 \). Here, \(U_i \) is equivalent to \(\epsilon_i \) and \(Q_i \) is equivalent to \(\epsilon_i \) in Equation (7). Then,

\[
p'(w_{ii}) = \mathbb{E}[(g(L_{-i-1} + l_i) - g(L_{-i-1})) \cdot \Gamma_i e^{\epsilon_i(r_i)}].
\]

We next apply Equation (8) to develop other estimators. Let \(f_{\Gamma_i}(\cdot) \) denote the density of \(\Gamma_i \). Note that, in this model, \(\Gamma_1, \ldots, \Gamma_p \) are mutually independent. First, let \(\Lambda_i = -\Gamma_i \). Then, we have \(\beta_i = (1/w_{ii})[\log(1-U_i) + \sum_{k=2}^{p} w_{ik} \Gamma_k] \) and

\[
\beta'_i(w_{ii}) = \begin{cases}
-\frac{1}{w_{ii}} \left[\log(1-U_i) + \sum_{k=2}^{p} w_{ik} \Gamma_k \right] = -\frac{\beta_i}{w_{ii}}, & \text{if } i = 1; \\
0, & \text{if } i = 2, \ldots, m.
\end{cases}
\]

By Equation (8) and similar analysis as in §4.1, we have:

\[
p'(w_{ii}) = -\mathbb{E}[(g(\mathcal{F}_{-i-1} + l_i) - g(\mathcal{F}_{-i-1})) \cdot \beta_i/w_{ii} \cdot f_{\Gamma_i}(-\beta_i)].
\]

Second, we let \(\Lambda_i = -\Gamma_i \) (which can be extended easily to \(\Lambda_i = -\Gamma_i \) for any \(j = 2, \ldots, p \)). Then, \(\beta_i = (1/w_{ij})[\log(1-U_i) + \sum_{k=1}^{p} w_{ik} \Gamma_k] \) and

\[
\beta'_i(w_{ii}) = \begin{cases}
\Gamma_i/w_{ij}, & \text{if } i = 1; \\
0, & \text{if } i = 2, \ldots, m.
\end{cases}
\]

By Equation (8) and similar analysis, we have:

\[
p'(w_{ii}) = \mathbb{E}[(g(\mathcal{F}_{-i-1} + l_i) - g(\mathcal{F}_{-i-1})) \cdot \Gamma_i/w_{ij} \cdot f_{\Gamma_i}(-\beta_i)].
\]

Given Equations (17)–(19), we can develop \(p+1 \) sample-mean estimators of \(p'(w_{ii}) \) if an i.i.d. sample of \(\{\Gamma_i, U_i, \ldots, U_m\} \) is available.

4.3. Doubly Stochastic Models

Let \(\{N_i(t) : t \geq 0\} \) denote a nonhomogeneous Poisson process with nonnegative stochastic intensity process \(\lambda_i = (\lambda_i(t) : t \geq 0) \). In doubly stochastic models, the default of obligor \(i \) occurs at the first jump time \(\tau_i = \min\{t \geq 0 : N_i(t) = 1\} \). Then, conditioned on the intensities \(\lambda_i, i = 1, \ldots, m \), the default time \(\tau_i \) of obligor \(i \) is mutually independent random variables with

\[
\text{Pr}[\tau_i > t | \lambda_i] = \text{Pr}[N_i(t) = 0 | \lambda_i] = \exp \left\{ -\int_0^t \lambda_i(u) \, du \right\}.
\]

Let \(\Lambda_i = \int_0^t \lambda_i(u) \, du \), and let \(E_i, i = 1, \ldots, m \) be independent exponential random variables with mean 1. Then \(\{\tau_i < T\} \) is equivalent to \(\{E_i < \Lambda_i\} \)—i.e., obligor \(i \) defaults before time \(T \) if \(E_i < \Lambda_i \).

To model the dependence among the obligors, the intensity process is often modeled as

\[
\lambda_i(t) = S_i(t) + S_{-i}(t),
\]

where \(\{S_i(t) : t \geq 0\} \) models the common part of the intensity processes of all obligors and \(\{S_{-i}(t) : t \geq 0\} \) models the individual part of obligor \(i \)’s intensity process. In this model, \(S_i(t) \) and \(S_{-i}(t), i = 1, \ldots, m \), are often modeled as diffusion processes, e.g.,

\[
dS_i(t) = \mu_i(t, S_{-i}(t)) \, dt + \sigma_i(t, S_{-i}(t)) \, dB_i(t),
\]

\[
dS_{-i}(t) = \mu_i(t, S_{-i}(t)) \, dt + \sigma_i(t, S_{-i}(t)) \, dB_{-i}(t),
\]

where \(B_i \) and \(B_{-i} \), \(i = 1, \ldots, m \), are mutually independent Brownian motion processes. To ensure the nonnegativity of \(S_i \) and \(S_{-i} \), square-root diffusion processes (e.g., CIR processes) are often used.

Example 6 (The Model of Duffie and Gârleanu 2001). Duffie and Gârleanu (2001) model \(S_i \) and \(S_{-i} \) by CIR processes with jumps, i.e.,

\[
dS_i(t) = \kappa(u, S_i(t)) \, dt + \sigma S_i(t) \sqrt{S_i(t)} \, dB_i(t) + dI_i(t),
\]

\[
dS_{-i}(t) = \kappa(u, S_{-i}(t)) \, dt + \sigma S_{-i}(t) \sqrt{S_{-i}(t)} \, dB_{-i}(t) + dI_{-i}(t),
\]

where \(B_i \) and \(B_{-i} \) are mutually independent Brownian motions, and \(J_i \) and \(J_{-i} \) are mutually independent pure-jump processes and also independent of the Brownian motions. Their jump sizes are independent and exponentially distributed, and their jump times are formulated as a series of Poisson processes (jump sizes and jump times are also independent). To simulate these processes, we may simulate the sets of jumps first and add the jump times to the set of discretized time steps and then apply the Euler scheme at the new set of time steps.

To simulate \(\lambda_i(t) \) and to evaluate \(\Lambda_i \) in the doubly stochastic models, we often use the Euler scheme to discretize \(S_i(t) \) and \(S_{-i}(t), i = 1, \ldots, m \) (Glasserman 2004).
Let \(k \) be the number of time steps in the discretization, and \(\Delta t = T/k \). Furthermore, let \(\hat{S}_c \) and \(\hat{S}_p \) denote time-discretized approximations to \(S_c \) and \(S_p \). Under the Euler scheme,

\[
\hat{S}_c(t_{j+1}) = \hat{S}_c(t_j) + \mu_c(t_j, \hat{S}_c(t_j)) \Delta t + \sigma_c(t_j, \hat{S}_c(t_j)) \sqrt{\Delta t} Z_{c,j+1},
\]

\[
\hat{S}_p(t_{j+1}) = \hat{S}_p(t_j) + \mu_p(t_j, \hat{S}_p(t_j)) \Delta t + \sigma_p(t_j, \hat{S}_p(t_j)) \sqrt{\Delta t} Z_{p,j+1},
\]

for \(j = 0, 1, \ldots, k-1 \) and \(i = 1, \ldots, m \), with \(\hat{S}_c(0) = S_c(0) \) and \(\hat{S}_p(0) = S_p(0) \), where \(Z_{c,j+1} \) and \(Z_{p,j+1} \) are independent standard normal random variables for \(j = 0, \ldots, k-1 \) and \(i = 1, \ldots, m \). Then, we can approximate \(\Lambda_i \) by

\[
\hat{\Lambda}_i = \sum_{j=0}^{k-1} \hat{\lambda}_i(t_j) \Delta t = \sum_{j=0}^{k-1} [\hat{S}_c(t_j) + \hat{S}_p(t_j)] \Delta t.
\]

Suppose we use the doubly stochastic model defined in Equations (20)–(22) and use the discretization scheme defined in Equation (25) to evaluate \(\Lambda_i \). Furthermore, suppose we are interested in estimating \(p'(S_i(0)) \) for \(i = 1, \ldots, m \). Without loss of generality, we consider \(p'(S_i(0)) \).

Let \(X = E_t - \hat{\Lambda}_i \). Here, \(E_t \) is equivalent to \(e_t \) and \(\hat{\Lambda}_i \) is equivalent to \(T_i \) in Equation (7). Then, by Equation (7), we have:

\[
p'(S_i(0)) = E\left[g(L_{-1} + l_i) - g(L_{-1}) \cdot \hat{\Lambda}_i(S_i(0)) \cdot f_{e_t}(\hat{\Lambda}_i) \right],
\]

where

\[
\hat{\Lambda}_i(S_i(0)) = \sum_{j=0}^{k-1} d\hat{S}_i(t_j) \cdot \Delta t,
\]

with pathwise derivative

\[
\frac{d\hat{S}_i(t_j)}{dS_i(0)} = \frac{d\hat{S}_i(t_j)}{d\hat{S}_i(t_{j-1})} \cdot \frac{d\hat{S}_i(t_{j-1})}{d\hat{S}_i(t_{j-2})} \cdots \frac{d\hat{S}_i(t_1)}{dS_i(0)},
\]

and

\[
\frac{d\hat{S}_i(t_j)}{d\hat{S}_i(t_{j-1})} = 1 + \frac{\mu_i(t_{j-1}, \hat{S}_i(t_{j-1})) \Delta t}{d\hat{S}_i(t_{j-1})} + \frac{\sigma_i(t_{j-1}, \hat{S}_i(t_{j-1})) \sqrt{\Delta t} Z_{i,j}}{d\hat{S}_i(t_{j-1})}.
\]

We may also use other individual random factors, \(Z_{i,k-1} \) (defined in Equation (24)), to derive another set of estimators. Let \(X_i = -Z_{i,k-1} - \xi_i \), where

\[
\xi_i = \left(\sum_{j=0}^{k-2} \hat{\lambda}_i(t_j) \Delta t + \hat{S}_c(t_{k-1}) \Delta t + \hat{S}_p(t_{k-2}) \Delta t \right. + \mu_i(t_{k-2}, \hat{S}_i(t_{k-2})) \Delta t - E_i \left. \right) \cdot \left[\sigma_i(t_{k-2}, \hat{S}_i(t_{k-2})) \right]^{(3/2)}.
\]

Given Equations (26)–(28), we can develop three sample-mean estimators of \(p'(S_i(0)) \) if an i.i.d. sample of \(\{E_t, \ldots, E_m, Z_{-1,i}, \ldots, Z_{-k,i}, Z_{i,j}, i = 1, \ldots, m, j = 1, \ldots, k \} \) is available.

Under the Euler scheme, the computational complexity of \(\hat{\Lambda}_i \) is \(O(k) \), but the complexity of computing \(\hat{\Lambda}_i(\theta) \) depends on the exact form of parameter \(\theta \), as it does for \(p'(\theta) \). If \(\theta \) is an idiosyncratic parameter,
e.g., $\theta = S_i(0)$, then it takes $O(km)$ to compute $p'(\theta)$ by Equations (26), (27), or (28). If θ is a macroeconomic parameter, e.g., $\theta = S(0)$, then it takes $O(km^2)$ to compute $p'(\theta)$ using $\mathcal{L}_{\cdot -\cdot}$ and $O(km)$ to compute $p'(\theta)$ using $L_{\cdot -\cdot}$, which is caused by the difference between computing $\mathcal{L}_{\cdot -\cdot}$ and $L_{\cdot -\cdot}$.

5. Numerical Experiments

In this section, we test the performances of our estimators through three examples, including one for latent variable models, one for Bernoulli mixture models, and one for doubly stochastic models. In each example, we consider two performance functions, $g_1(L) = 1_{[\ell > y]}$ and $g_2(L) = L \cdot 1_{[\ell > y]}$ (denoted as Cases A and B, respectively), and estimate the $d \log \mathbb{E}[g(L)]/d \theta$ for some parameter θ that is in the model of the joint defaults. For each example and each performance function, we consider three types of estimators, the LR estimator when it is applicable (we will derive the LR estimator later), the kernel estimator given by Equation (4), and the various sample-mean estimators developed in §4, and we compare their performances. It is worth noting that there are multiple sample-mean estimators that can be used to estimate $p'(\theta)$ by the results in §4. Furthermore, these estimators can all be computed by using the sample generated in the same simulation. Therefore, this motivates us to use linear combinations of these estimators to obtain more efficient estimators.

In all three examples, without additional specifications, there are 100 obligors in the loan portfolio (i.e., $m = 100$) and the loss due to default of obligor i equals 100 (i.e., $L_i = 100$ for all $i = 1, \ldots, 100$). In both performance functions, we set $y = 2,000$—i.e., we are interested in the cases where at least 20 obligors default. Other parameters of examples will be introduced according to their models.

To use the kernel estimator of Equation (4), we need to choose the bandwidth parameter δ_n. As shown in Hong and Liu (2010), to achieve the optimal rate of convergence, δ_n should be in the order of $n^{-1/5}$. Then, we set $\delta_n = cn^{-1/5}$ for some positive constant c. We test the kernel estimators with different values of c for all three examples and find that $c = 1$ is always a good choice. Therefore, we set $c = 1$ for all three examples.

5.1. A Latent Variable Model

We consider the model of Bassamboo et al. (2008) introduced in Example 3. We suppose that both the common factor Z and idiosyncratic factor ϵ follow a standard normal distribution, $\rho = 0.6$, $d_i = -2$, for all i, and the common shock factor $W = \theta \xi$ where $\theta = 1$ and ξ follows an exponential distribution with mean 1. We are interested in estimating the sensitivities of the expected performances of the two performance functions with respect to the average shock size θ.

To obtain the LR estimator, we consider θ as the mean parameter of W (i.e., we transfer the structural parameter into a distributional parameter). Then, θ will not appear in other random variables, which allows us to obtain the score function (SF). The density function of W, $f_W(x) = (1/\theta) f_\xi(x/\theta) = (1/\theta) e^{-x^2/\theta}$ for $x \geq 0$. Then,

$$p'(\theta) = \mathbb{E}[g(L) \cdot SF] = \mathbb{E}[g(L) \cdot (-1 + \xi/\theta)],$$

where $SF = (d/d\theta) \log((1/\theta) e^{-W/\theta}) = -(-1/\theta + W/\theta^2 = (-1 + \xi/\theta)$. Given Equation (29), we obtain the LR estimator of $p'(\theta)$ if an i.i.d. sample of $(Z, \xi, \epsilon_1, \ldots, \epsilon_m)$ is available.

To simulate the joint defaults, we can generate an i.i.d. sample of $(Z, \epsilon_1, \epsilon_2, \ldots, \epsilon_m)$, denoted by $(Z_i, \epsilon_1, \epsilon_2, \ldots, \epsilon_m) : i = 1, 2, \ldots, n$. Based on the sample, we may compute the kernel estimator of Equation (4), the LR estimator of Equation (29), the three sample-mean estimators of Equations (14)–(16) (which we denote as Estimators 1–3, respectively), and the combined estimator calculated from the three sample-mean estimators (see §3.3 for derivation). We report the estimates (denoted by \hat{M}) and the standard errors of these estimators (denoted by s.e.) in Table 1 with different sample sizes.

From Table 1, we have several findings for both performance functions. First, the kernel estimator can appropriately estimate the sensitivities. This finding demonstrates the correctness of Theorem 1 and the usefulness of the kernel estimator. Second, the sample-mean estimators and the combined estimator appear to have a rate of convergence of $n^{-1/2}$ and the kernel estimator appears to have a rate of convergence nearly $n^{-1/2}$. This finding supports our motivation of deriving sample-mean estimators. Third, the combined estimator has a smaller standard error than the three sample-mean estimators. Fourth, conditioning on a common risk factor, e.g., Estimators 2 and 3, may yield estimators that have smaller standard error than conditioning solely on an idiosyncratic risk factor (as in Chen and Glasserman 2008). Fifth, the LR estimator achieves the same rate of convergence of $n^{-1/2}$ as the sample-mean estimators, but it has larger standard errors than the best sample-mean estimator (and also the combined estimator).

We next consider the time taken to compute each estimate. Unlike the previous experiment only using one i.i.d. sample to obtain all of the estimates, the numerical test for timing is carried out by using different i.i.d. samples for different estimates. We run the MATLAB code on a 3.40 GHz Intel Quad-Core PC with 4 GB of RAM for our numerical tests. Even though there are
Table 1 The Estimates and Their Standard Errors (s.e.) for the Model of Bassamboo et al. (2008)

<table>
<thead>
<tr>
<th>Case A</th>
<th>$n = 10^4$</th>
<th>$n = 10^5$</th>
<th>$n = 10^6$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\overline{M}</td>
<td>s.e. ($\times 10^{-3}$)</td>
<td>\overline{M}</td>
</tr>
<tr>
<td>Estimator 1</td>
<td>-0.2052</td>
<td>2.2</td>
<td>-0.2111</td>
</tr>
<tr>
<td>Estimator 2</td>
<td>-0.2041</td>
<td>0.12</td>
<td>-0.2072</td>
</tr>
<tr>
<td>Estimator 3</td>
<td>-0.2061</td>
<td>0.21</td>
<td>-0.2081</td>
</tr>
<tr>
<td>Combined</td>
<td>-0.2046</td>
<td>0.11</td>
<td>-0.2074</td>
</tr>
<tr>
<td>Kernel</td>
<td>-0.2260</td>
<td>2.4</td>
<td>-0.2091</td>
</tr>
<tr>
<td>LR</td>
<td>-0.2144</td>
<td>0.36</td>
<td>-0.2069</td>
</tr>
</tbody>
</table>

Case B

<table>
<thead>
<tr>
<th></th>
<th>$n = 10^4$</th>
<th>$n = 10^5$</th>
<th>$n = 10^6$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\overline{M}</td>
<td>s.e.</td>
<td>\overline{M}</td>
</tr>
<tr>
<td>Estimator 1</td>
<td>-983.8</td>
<td>47.5</td>
<td>-1,003.7</td>
</tr>
<tr>
<td>Estimator 2</td>
<td>-971.1</td>
<td>8.1</td>
<td>-989.9</td>
</tr>
<tr>
<td>Estimator 3</td>
<td>-991.4</td>
<td>9.6</td>
<td>-994.0</td>
</tr>
<tr>
<td>Combined</td>
<td>-979.5</td>
<td>6.2</td>
<td>-991.4</td>
</tr>
<tr>
<td>Kernel</td>
<td>-1,029.1</td>
<td>52.3</td>
<td>-1,004.1</td>
</tr>
<tr>
<td>LR</td>
<td>-1,021.1</td>
<td>19.5</td>
<td>-989.7</td>
</tr>
</tbody>
</table>

Note: Estimators 1–3 are specified by Equations (14)–(16), respectively.

We find that the times for computing Estimator 1 and the kernel estimator are almost the same, and they are higher than that of computing the LR estimator. From the left panel in Table 2, the time of computing the combined estimator is about one order larger than other estimators (≈ 15 times greater than that of computing Estimator 1), which is reasonable based on the analysis of the computational complexities of different estimators as shown in §3. Recall that the computational complexity of either Estimators 2 or 3 is $O(m^2)$ and that of Estimator 1 is $O(m)$. Therefore, the computational complexity of the combined estimator, calculated based on the three sample-mean estimators, is also $O(m^2)$. This is also consistent with the result in the right panel. The times for computing Estimator 1, the kernel estimator, and the LR estimator increases linearly as m increases while that of computing the combined estimator grows faster than $O(m)$. In this case, the benefit of the combined estimators (as well as Estimators 2 and 3) may be canceled out as a result of a higher computational complexity. Thus, we suggest deriving estimators by conditioning only on idiosyncratic factors for macroeconomic parameters when the number of obligors is large.

5.2. A Bernoulli Mixture Model

We consider the CreditRisk$^+$ model introduced in Example 4. We suppose that Γ is a 5-dimensional vector of independent gamma distributed macroeconomics factors all with shape parameter 3 and scale parameter 0.1 (i.e., $\Gamma_j \sim \text{Gamma}(3, 0.1)$ for $j = 1, \ldots, 5$), and all weights are equal to 0.1 (i.e., $w_{ij} = 0.1$ for $i = 1, \ldots, 100$ and $j = 1, \ldots, 5$). We are interested in estimating the sensitivities of the expected performances of the two performance functions with respect to w_{11}.

For this example, it is unclear to us how the LR method may be applied directly because we are not able to write the parameter w_{11} as a distributional parameter of a single random variable. Push-out techniques may be helpful when the structural parameter w_{11} cannot be easily converted to a distributional parameter (Rubinstein 1992). However, this technique is model-dependent and may not be suitable for general models. Thus, we do not consider the LR method for this example.

In this example we have six sample-mean estimators (denoted as Estimators 1–6). Estimator 1 is the one
given by Equation (17), Estimator 2 is the one given by Equation (18), and Estimators 3–6 are the ones given by Equation (19) applied to \(\Gamma^1 \)–\(\Gamma^3 \) respectively. The combined estimator is calculated by combining Estimators 1–6.

We report the performances of the kernel estimators, the six sample-mean estimators, and the combined estimators for different sample sizes in Table 3. From the table we see that the findings of §5.1 also hold in this example, except that the estimator conditioning on the idiosyncratic risk factor (i.e., Estimator 1) has a lower standard error than the estimators conditioning on the common risk factors (i.e., Estimators 2–6). This implies that it is hard to identify which one is better in advance among the estimators derived by conditioning on either idiosyncratic factors or macroeconomic factors.

We also report the computation times of different estimators in Table 4. It is interesting to find that the computational time of computing Estimator 1 and that of computing the kernel estimator are almost the same and in the same order of magnitude of computing other estimators. This is because the computational complexities of all estimators are \(O(m) \) when the parameter \(w_{11} \) is an idiosyncratic parameter. The time for computing the combined estimator, which is calculated based on the six sample-mean estimators, is less than the total time of computing each of them. This finding suggests the advantage of using a linear combination of multiple estimators for idiosyncratic parameters.

5.3. A Doubly Stochastic Model

We consider a doubly stochastic model where both \(S_i(t) \) and \(S_i(t) \), \(i = 1, \ldots, m \), follow CIR processes. Specifically, suppose that

\[
\begin{align*}
\mu_i(t, S_i(t)) &= \kappa_i(\mu_i - S_i(t)) \\
\sigma_i(t, S_i(t)) &= \sigma_i \sqrt{S_i(t)},
\end{align*}
\]

where \(\kappa_i = 0.002, \mu_i = 0.1, \sigma_i = 0.02 \), and \(\kappa_i = 0.001, \mu_i = 0.07, \sigma_i = 0.01 \) for all \(i = 1, \ldots, m \). The initial values \(S_i(0) = 0.1 \) and \(S_i(0) = 0.08 \) for all \(i = 1, \ldots, m \), and the time horizon \(T = 1 \). We are interested in estimating the sensitivities of the expected performances of the two performance functions with respect to \(S_i(0) \). In the numerical study, we use the discretization scheme introduced in §4.3 to evaluate \(\Lambda_i \), the integral of the default intensity of obligor \(i \) for all \(i = 1, \ldots, m \).

The LR method cannot be directly applied to doubly stochastic models if we use Equation (25) under the Euler scheme because the structural parameter \(S_i(0) \)
cannot be fully converted to a distributional parameter. To make the LR method work, we approximate λ_i by
\[\hat{\lambda}_i = \sum_{j=1}^{k} \tilde{\lambda}(t_j) \Delta t = \sum_{j=1}^{k} [\tilde{S}(t_j) + \tilde{S}(t_j)] \Delta t, \tag{31} \]
and use the conditional technique of Hong and Liu (2010). After some derivation (see the supplemental material for the detailed derivation), we have the LR estimator
\[p'(S_i(0)) = E \left[g(L) \cdot \left(\tilde{S}(t_i) - \kappa_i \mu_1 \Delta t \right) - \sigma_i^2 \tilde{S}(0) \Delta t - (1 - \kappa_i \Delta t^2) S_i(0) \right] \Delta t. \tag{32} \]

Besides the LR estimator, we have three other sample-mean estimators. Estimator 1 is given by Equation (26), and Estimators 2 and 3 are given by Equations (27) and (28), respectively. The combined estimator is calculated by combining Estimators 1–3.

In this example, we fix the sample size $n = 10^6$ and investigate how the number of time steps affects the accuracy of the estimators. We report the estimates (\hat{M}) and their standard errors (s.e.) for different numbers of time steps in Table 5 with $\hat{\lambda}$ given by Equation (25) and Table 6 with $\hat{\lambda}$ given by Equation (31). From both tables, we see that the performances of Estimators 2, 3, and the LR estimator deteriorate as the number of time steps increases. This deterioration is typical for estimators that condition on the last time step (see, for instance, Hong and Liu 2010 for some more examples). However, in our example, both Estimator 1 (and thus the combined estimator) and the kernel estimator are not affected by the numbers of time steps. In this example, the LR estimator performs poorly

<table>
<thead>
<tr>
<th>Table 5</th>
<th>The Estimates and Their Standard Errors for the Doubly Stochastic Model with $\hat{\lambda}$, Given by Equation (25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time steps k</td>
<td>2</td>
</tr>
<tr>
<td>Case A</td>
<td>\hat{M} s.e. ($\times 10^{-3}$)</td>
</tr>
<tr>
<td>Estimator 1</td>
<td>0.0516</td>
</tr>
<tr>
<td>Estimator 2</td>
<td>0.0491</td>
</tr>
<tr>
<td>Estimator 3</td>
<td>0.0573</td>
</tr>
<tr>
<td>Combined</td>
<td>0.0516</td>
</tr>
<tr>
<td>Kernel</td>
<td>0.0518</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case B</th>
<th>\hat{M}</th>
<th>s.e.</th>
<th>\hat{M}</th>
<th>s.e.</th>
<th>\hat{M}</th>
<th>s.e.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimator 1</td>
<td>119.22</td>
<td>0.42</td>
<td>119.90</td>
<td>0.42</td>
<td>119.53</td>
<td>0.42</td>
</tr>
<tr>
<td>Estimator 2</td>
<td>113.30</td>
<td>7.74</td>
<td>133.13</td>
<td>14.60</td>
<td>99.30</td>
<td>26.7</td>
</tr>
<tr>
<td>Estimator 3</td>
<td>130.89</td>
<td>5.67</td>
<td>114.51</td>
<td>8.93</td>
<td>106.02</td>
<td>19.2</td>
</tr>
<tr>
<td>Combined</td>
<td>119.24</td>
<td>0.42</td>
<td>119.89</td>
<td>0.42</td>
<td>119.53</td>
<td>0.42</td>
</tr>
<tr>
<td>Kernel</td>
<td>119.67</td>
<td>1.34</td>
<td>120.68</td>
<td>1.35</td>
<td>121.78</td>
<td>3.16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 6</th>
<th>The Estimates and Their Standard Errors for the Doubly Stochastic Model with $\hat{\lambda}$, Given by Equation (31)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time steps k</td>
<td>2</td>
</tr>
<tr>
<td>Case A</td>
<td>\hat{M} s.e. ($\times 10^{-3}$)</td>
</tr>
<tr>
<td>Estimator 1</td>
<td>0.0514</td>
</tr>
<tr>
<td>Estimator 2</td>
<td>0.0554</td>
</tr>
<tr>
<td>Estimator 3</td>
<td>0.0557</td>
</tr>
<tr>
<td>Combined</td>
<td>0.0514</td>
</tr>
<tr>
<td>Kernel</td>
<td>0.0513</td>
</tr>
<tr>
<td>LR</td>
<td>0.0680</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case B</th>
<th>\hat{M}</th>
<th>s.e.</th>
<th>\hat{M}</th>
<th>s.e.</th>
<th>\hat{M}</th>
<th>s.e.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimator 1</td>
<td>118.80</td>
<td>0.42</td>
<td>119.22</td>
<td>0.42</td>
<td>120.13</td>
<td>0.42</td>
</tr>
<tr>
<td>Estimator 2</td>
<td>122.47</td>
<td>8.14</td>
<td>106.54</td>
<td>12.84</td>
<td>109.65</td>
<td>29.3</td>
</tr>
<tr>
<td>Estimator 3</td>
<td>123.59</td>
<td>5.53</td>
<td>103.99</td>
<td>8.42</td>
<td>115.23</td>
<td>20.5</td>
</tr>
<tr>
<td>Combined</td>
<td>118.80</td>
<td>0.42</td>
<td>119.21</td>
<td>0.42</td>
<td>120.13</td>
<td>0.42</td>
</tr>
<tr>
<td>Kernel</td>
<td>118.46</td>
<td>1.34</td>
<td>119.08</td>
<td>1.34</td>
<td>120.90</td>
<td>1.35</td>
</tr>
<tr>
<td>LR</td>
<td>183.57</td>
<td>424.31</td>
<td>414.97</td>
<td>601.39</td>
<td>-1,186.6</td>
<td>1,042.5</td>
</tr>
</tbody>
</table>

Note. Estimators 1–3 are specified by Equations (26)–(28), respectively.
when the sample size is $n = 10^6$. To make sure the LR estimator is correct, we run the experiment with time step $k = 4$, sample size $n = 10^{10}$, and the other parameters remaining the same. It takes approximately 84 hours to obtain the estimate 0.0537 with a standard error 0.0024.

6. Conclusions
In this paper, we derive a closed-form expression for the sensitivities of the expected value of a performance function of a portfolio credit loss with respect to a parameter in the model of joint defaults. We show that the differentiability does not depend on the differentiability of the performance function. Based on the closed-form expression, which is in the form of a conditional expectation, we propose two methods to estimate the sensitivities. First, we propose a kernel estimator that is typically easy to use and applicable to many models of joint default but that has a rate of convergence slower than $n^{-1/2}$. Second, we propose using model information to further convert the conditional expectation to unconditioned expectations and using sample-mean estimators to estimate the sensitivities. We demonstrate the second method on three commonly used models of joint defaults: latent variable, Bernoulli mixture, and doubly stochastic models. We show that multiple sensitivities can be derived based on the second method. This suggests that all sample-mean estimators should be combined to further improve the estimation performance. We test the kernel estimator, various sample-mean estimators, and the combined estimator through three examples and compare them with the estimators derived by the LR method. The numerical results show that various sample-mean estimators by our method often work well.

We report the computational times of computing Estimator 1, the combined estimator, the kernel estimator, and the LR estimator when sample size $n = 10^6$ in Table 7. From Table 7, we find that it almost takes the same amount of time to compute Estimator 1, the kernel estimator, and the LR estimator. Moreover, the time for the combined estimator increases slightly compared with other estimators even though the combined estimator is obtained after computing the three sample-mean estimates.

For future work, we will study how to estimate sensitivities when the joint defaults are modeled using frailty models or self excited models, which are closely related to doubly stochastic models but are capable of capturing default clustering effects (see, for instance Giesecke et al. 2010 for a thorough introduction of these models). In these models, the intensity function may not be continuous with respect to the parameter that we want to consider. Therefore, the conditions of Theorem 1 may not hold, and the sensitivities may be more difficult to estimate than under doubly stochastic models.

Table 7 Time (in Seconds) Taken to Compute Each Estimator with 100 Replications

<table>
<thead>
<tr>
<th>Time steps k</th>
<th>Estimator 1</th>
<th>Combined</th>
<th>Kernel</th>
<th>LA</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>18.60</td>
<td>30.68</td>
<td>18.67</td>
<td>17.38</td>
</tr>
<tr>
<td>4</td>
<td>28.94</td>
<td>35.72</td>
<td>24.96</td>
<td>23.54</td>
</tr>
<tr>
<td>12</td>
<td>68.13</td>
<td>84.81</td>
<td>68.48</td>
<td>67.28</td>
</tr>
</tbody>
</table>

Supplemental Material
Supplemental material to this paper is available at http://dx.doi.org/10.1287/ijoc.2014.0602.

Acknowledgments
The authors thank the associate editor and two anonymous referees for their insightful and detailed comments that have significantly improved this paper. This research was supported in part by the Hong Kong Research Grants Council [GRF613410, GRF613011, and N-HKUST 626/10].

References

