
Component-based E-Commerce: Assessment of
Current Practices and Future Directions

Martin Bichler
Department of MIS

Vienna University of Economics and
Business Administration

Augasse 2-6, A-1090 Wien, Austria

Arie Segev
Haas School of Business, University

of California &
Lawrence Berkeley National

Laboratory, Berkeley, CA 94720

J. Leon Zhao
School of Business and Management

Hong Kong University of Science
and Technology

Clear Water Bay, Kowloon, Hong Kong

Abstract

Component-based e-commerce technology is a
recent trend towards resolving the e-commerce
challenge at both system and application levels.
Instead of delivering a system as a
prepackaged monolith system containing any
conceivable feature, component-based systems
consist of a lightweight kernel to which new
features can be added in the form of
components. In order to identify the central
problems in component-based e-commerce and
ways to deal with them, we investigate
prototypes, technologies, and frameworks that
will transcend the current state of the practice in
Internet commerce. In this paper, we first
discuss the current practices and trends in
component-based electronic commerce based
on the International Workshop on Component-
based Electronic Commerce. Then, we
investigate a number of research issues and
future directions in component-based
development for electronic commerce.

1. Introduction

E-commerce has been embraced by many as the
new frontier of information revolution, and millions of
dollars are being invested in Web-based electronic
commerce systems (Dogac, 1998; Shaw, Gardner,
and Thomas, 1997). However, the development of
electronic commerce applications today is
considered expensive and risky because of many
technological limitations, such as the absence of
application-level interoperability, industrial standards
for electronic trading and large-scale reusability of
electronic commerce applications.

A current trend is to move towards object
frameworks or component-oriented programming.
Instead of delivering a system as a prepackaged
monolithic software system containing any
conceivable feature, component-based systems
consist of a lightweight kernel to which new features

can be added in the form of components.
Distributed object standards as well as document-
centric electronic commerce standards enable
easier inter-operability of electronic commerce
applications in a heterogeneous environment.

In the software industry, components are referred to
as a specific piece of functionality that can be
accessed by other software through a contractually
specified interface. They are self-contained, clearly
identifiable artifacts that describe and/or perform
specific functions (Sametinger, 1997). The basic
capabilities of component-based systems should
include the plug and play features at various
granularities, interoperability across networks,
portability on different hardware and software
platforms, coexistence with legacy applications,
mobility in various networking environments such as
Internet, Intranet, and Extranet, and ability of self-
managing data resources. The electronic market
place requires higher level components that deliver
particular business functionality. Inter-operability at
this level is also required.

In order to identify the central problems in
component-based e-commerce and ways to deal
with them, we investigate prototypes, technologies,
and frameworks that will transcend the current state
of the practice in Internet commerce. In this paper,
we first investigate the current practices and trends
based on the International Workshop on
Component-based Electronic Commerce. Then, we
develop a framework of concepts and issues for
research in component-based e-commerce. Finally,
we indicate our view on future directions in
component-based development in the context of
electronic commerce.

2. International Workshop on Component-
Based Electronic Commerce

An International Workshop on Component-based
Electronic Commerce (CEC’98) was held on July
25, 1998 at the Fisher Center for Management and
Information Technology, Haas School of Business,

University of California, Berkeley. The main
objective of the workshop was to identify the central
issues of component-based e-commerce and ways
to deal with them by gathering researchers and
developers from industry, government, and
academia to report their experiences with setting up,
running, and maintaining electronic commerce
systems. In the workshop, researchers presented
prototypes, technologies, and frameworks that
reflect the current state of the practice in Internet
commerce. The workshop included four sessions
and a closing panel, the focal problems and topics
of which are listed below (The workshop can be
accessed at http://haas.berkeley.edu/~cmit/cec/).

Session 1: E-Commerce Components and
Frameworks
Problem:
A large proportion of today’s electronic commerce
applications is custom developed. Custom
development is risky and expensive. There is little or
no reuse even for very generic functionality like
order entry modules or payment servers as many
software modules are developed to run with a
certain Web server or database server and cannot
simply be "plugged" into another environment.

Topics:

• Examples for reusable software components in
e-commerce

• Experiences with commercial component
models like JavaBeans, Java Servlets, DCOM,
Oracle Cartridges, etc.

• What are the requirements for plug-and-play
component solutions?

• Architectural properties: What are “ilities”, i.e.,
some property added to the system that is
independent of the functionality of that system
(reliability, availability, scalability, evolvability,
...)?

• Are today's fast moving component standards
enabling or invalidating the idea of components
for e-commerce?

Session 2: Business-to-Business E-Commerce
Problem:
Business-to-business e-commerce is an area where
e-commerce will have the most major impact in the
short term. Currently, business-to-business e-
commerce is dominated by EDI type applications
and long standing relationships. IT is expected to
enable ad-hoc collaboration of companies, virtual
enterprises and streamlined supply chains.

Topics:
• What are special requirements for B2B e-

commerce?

• Which business models are likely to evolve?

• Experiences in supply chain management,
procurement, catalog management?

• How can e-commerce components contribute to
this domain?

• What are good scenarios for integration of
components with legacy systems?

• What is the role of agents, market mechanisms
and automated negotiations and their potential
for facilitating business-to-business commerce?

Session 3: E-Commerce Interoperability and
Standards

Problem:

One of the most obvious problems of Web-based
electronic commerce systems is the lack of high-
level inter-operability. Web sites format their CGI
requests and HTML outputs in vastly different and
often changing ways, each of which must be
processed differently. There are no widely accepted
high-level standards for electronic trading.

Topics:

• How can we communicate needs (e.g. buyers)
and capabilities (e.g. sellers) in electronic
marketplaces?

• New electronic commerce protocols XML/EDI,
OBI, OMG's IDL, OTP, X.12, EDIFACT ...

• Approaches to protocol negotiation and
translation

• Product taxonomies: How should product
taxonomies deal with product innovations and
complex products?

Session 4: Business & Software Components
Problem:
The development of an inter-operable component-
based E-commerce infrastructure will impact the
design and use of high-level business objects,
processes and architecture within companies, as
well as the software development process in
general.

Topics:

• Impact of component-based technology and
market place infrastructure on business objects
development

• Changes in the development methodologies of
Network Centric Component-based Applications

• Examples of component use in higher lever
objects (e.g., decision support, and brokering
systems)

Closing Panel "A Marketplace for E-commerce
Components - What is missing?"

Topics:

• Do we face a market for e-commerce
components of third party vendors or will
packaged software of a few vendors become
the predominant form?

• Can e-commerce interoperability standards be
flexible/extensible enough for the fast changing
requirements in e-commerce?

• How can we standardize e-commerce protocols
/ Who should standardize protocols?

• Which functionality is inadequate or missing for
future electronic market places?

• Do we have a clear picture of the business
requirements?

3. Fundamental Concepts of Component-based
E-Commerce

Component-based E-commerce is a combination of
several major information technologies. In this
section, we analyze a number of fundamental
concepts that are useful for understanding the
issues in component-based e-commerce that are
discussed subsequently. This summarizes also
many discussions during the Workshop on
Component-based E-commerce and reflects some
of the core issues in this emerging field.

3.1. Object-Oriented Programming and
Component-Based Programming

Newer software engineering technologies are based
on the principle of making the expression of ideas
simpler and more compact. Especially the renewed
popularity of object-oriented programming concepts
like encapsulation, information hiding and
polymorphism in the early 80s raised the level of
abstraction in problem formulation. Object-oriented
programming constructs business systems in terms
of objects that represent things in the real world
naturally and effectively, thus making the software
system easier to understand for designers,
programmers, and users. Object-oriented
programming has led to a revolution in software
development and is making software reuse an
easier task compared to older programming
concepts. Object frameworks are one step ahead as
they also reuse designs for specific problems. An
object framework is a collection of cooperating
objects that provide an integrated solution
(customizable by the developer) within an
application or technology. The components of an
object framework are not intended to work alone.

Both industries and universities around the world
have been moving towards object-oriented
programming.

Component-based programming focuses on
building and packaging robust, extendible, and
flexible components to allow reusers to build their
systems more quickly, more effectively, and less
expensively, which is another step forward towards
more and better software reuse and towards higher
software productivity. A component framework
defines rules for independently developed and
dynamically loadable components, rather than for
classes that are linked together. In contrast to most
object frameworks, component frameworks are
black-box frameworks, i.e., frameworks that can be
used without access to their source code and are
extended through composition. Component-based
programming requires a whole new set of
methodologies for software modeling, design,
development, and implementation, and will change
the ways software are developed and reused
(Jacobson, Griss, and Jonsson, 1997).

3.2. Containers, Wrappers, and Mediators

Several techniques can be used to deal with
incompatibility between components and systems,
including container, wrapper, and mediator. A
container refers to a piece of application software
that understands certain types of components and
can provide an application context for these
components. Examples of a container includes the
Oracle Application Server that can provide services
to application components called cartridges, which
are tied to the server using industry standard
protocols including CORBA, Java, and HTTP.

Wrappers are used to bridge mismatches
between various components of a software system.
A wrapper refers to a small piece of software that
hides certain portions of the component interface
that may have undesired effects on the software
system. An example of wrapper application is to
integrate a Java application into a DCOM framework
by a wrapper around the Java program so that it
becomes DCOM-aware.

Interfaces between incompatible components
can also be provided by a mediator such as an
intelligent agent through a proper coordination
among different components. The main difference
among mediator, wrapper, and container lies in the
way communication and coordination are done; a
container can understand the components directly,
a wrapper hides the heterogeneity between

components, and a mediator passes messages and
helps with negotiation between two components.

3.3. Black-Box Versus White-Box

Off-the-shelf components are often referred to as
black-box components because in general they do
not allow for customization and are used usually as
is (Pour, 1998). One successful example of black-
box framework is based on Microsoft’s Visual Basic
that offers a large set of prebuilt components called
Visual Basic Controls (VBXs) that are developed by
both Microsoft and third-party vendors. Black-box
frameworks can also be a code reuse strategy
within an enterprise that encourages or requires the
reuse without modification of carefully built
components (Jacobson, Griss, and Jonsson, 1997).
On the other hand, software components can also
be built based on object frameworks that rely
heavily on implementation inheritance that can only
be achieved through detailed understanding of the
source code of the objects. The difficulty with these
object frameworks is that they are abstract “designs”
whose reuse requires customization by expert
programmers (Thompson et al., 1997). This type of
object frameworks is referred to as white-box
framework (Segev and Bichler, 1998).

3.4. Document-Centric Versus API--Based
Interoperability

Interoperability between software components
within an application is achieved through component
models like CORBA, DCOM and JavaBeans. Here
interoperability is achieved through the
standardization of component interfaces or
application programming interfaces (API’s). The
classical example is OMG’s Object Management
Architecture. Interfaces of CORBA components are
defined with the Interface Definition Language (IDL)
and interfaces of generic components are
standardized by the OMG. Several approaches try
to achieve interoperability of electronic commerce
components. OMG’s Electronic Commerce Domain
Task Force (ECDTF) tries to standardize interfaces
of catalogs, brokers, agencies and other
components for electronic markets. This should lead
to a third party market of vendors for these
electronic commerce components and to
interoperability also between systems of different
market participants. A good example is the
Workflow framework, which specifies the API
protocols between various components in a typical
workflow system as defined by Workflow
Management Coalition (WFMC, 1994).

Another approach tries to achieve
interoperability between electronic commerce
applications through the standardization of
documents and document exchanges. Some of the
first approaches in this direction come from an
Internet Engineering Task Force (IETF) workgroup
covering EDI (EDIINT), which has recommended
standards for secure, interoperable electronic data
interchange over the Internet. Many new
approaches use XML, the eXtensible Markup
Language created and developed by the W3C XML
Working Group, as an underlying basis. The
language combines the simplicity of HTML with the
computability of EDI Standards and is meant to
make transaction sets easier to define and use
across companies. XML-centric interoperability
enables computer systems to exchange documents
– invoices, loan applications, contracts, insurance
claims, and so on, as Electronic Data Interchange
has tried to achieve for many years.

XML is intended for use on the World Wide
Web and retains features such as vendor
independence, user extensibility, complex structure,
validation, and human readability. Microsoft and
Netscape have promised to provide XML parsers in
future generations of Web browsers, and other
companies such as Veo Systems (Meltzer and
Glushko, 1998), a spin-off of CommerceNet, are
rushing to develop common business libraries built
on XML.

Compared to document-centric
interoperability, API-oriented interoperability is
difficult to achieve across various different
application domains although it may work well in
some application domains. However, realizing
document-centric interoperability may require many
years to mature as it takes time to unify the domain
specific vocabulary and common business libraries.

4. Research Issues of Component-based
Electronic Commerce

In this section we try to identify some of the
research issues in the field of component-based
electronic commerce. We focus on three specific
aspects, namely e-commerce frameworks and
standards, development methodologies and
business components.

4.1. E-commerce Frameworks and
Standards

New e-commerce frameworks are evolving rapidly,
however, few have many clues on what and which
will become the industrial standard(s). These

standards and frameworks are tackling different
aspects of electronic commerce. Therefore, it is of
great value to trace the various e-commerce
frameworks and compare their characteristics,
intended applications, advantages and limitations.
A research framework for comparing existing and
studying new e-commerce frameworks and
standards is urgently needed to provide researchers
and developers with evaluation metrics and R&D
directions.

As we have seen, in the previous section,
interoperability is a critical enabler for the
development of next generation of electronic
commerce applications. Several interoperable e-
commerce frameworks are taking place, rooted in
one or more business consortiums in the last couple
of years. These frameworks also impact research in
electronic commerce. In the next paragraphs we
introduce some of the most advanced approaches.

• Open Trading Protocol (OTP). OTP is a
protocol for interoperability of electronic
purchases on the Internet that encapsulates
payment protocols and offers/invoices/receipts
for payment and delivery. OTP is focused on 3-
way interchanges among consumers,
merchants and support services. The Open
Trading Protocol Consortium, a group of over 30
companies lead by Mondex, has released a
draft standard (currently version 0.9 – might
already be 1.0 at the time of publishing) aimed
at retail trade on the Internet.

• Open Financial Exchange (OFX). Open
Financial Exchange is a broad-based framework
for exchanging financial data and instructions
between customers and their financial
institutions. It is an open specification that
anyone can implement based on widely
accepted open standards for data formatting
(such as SGML and XML), connectivity (such as
TCP/IP and HTTP), and security (such as SSL).
OFX is backed up by the Banking Industry
Technology Secretariat (BITS), consisting of
CheckFree, Integrion, IBM, Intuit, and Microsoft.

• Open Buying on the Internet (OBI). The OBI
consortium released the OBI standard version
1.0 in May 1997 as an open, flexible framework
for business-to-business Internet commerce
solutions. OBI is intended for high-volume, low-
dollar amount transactions, which accounts for
80% of the purchasing activities in most
organizations. These types of transactions are
typically for indirect materials including
commodity goods and services such as office
supplies, scientific supplies, maintenance

supplies, PCs, etc. The business model of the
OBI framework assumes that buying
organizations only have one or a few approved
selling organizations for each category of
commodity items.

4.2. Development Methodologies for E-
Commerce Applications

The past few years have seen several major
information technologies come together to produce
viable electronic commerce systems. EDI, WWW,
cryptography, database servers, Java applets and
distributed object standards form a bewildering mix
of techniques and standards for the development of
electronic commerce applications. Development of
such applications is considered expensive and risky.

Recently, component-based software
development started to strongly influence this area.
It is important to define new techniques for the
design and implementation of electronic commerce
applications. Component-based software
engineering provides many useful concepts for the
development of electronic commerce applications.
Component-based e-commerce development is
leading the change in component-based software
development, and therefore, research on
development methodologies for component-based
e-commerce will have a far-reaching impact on the
whole software industry. A component-based
software system life cycle has been proposed that
includes the following major activities (Pour, 1998):

• Requirements analysis
• Software architecture selection, creation,

analysis, and evaluation
• Component evaluation, selection, and

customization
• Integration
• Component-based software system testing
• Component maintenance and upgrade
Component-based e-commerce methodologies can
be developed similarly, but with a more specific
focus on electronic commerce.

4.3. Computational Business Process
Components

Computational business processes have been
considered as software components for Electronic
Commerce (Scacchi and Noll, 1997). Business
Process Components are on a higher level of
abstraction and focus on the business needs of
applications. These computational components can
be configured into an organizational process
architecture for developing e-commerce applications
and can be reused in process-driven Intranets and

Extranets for distributed development and run-time
support. The vision for reusable process
components is to enable the design, integration, and
enactment of virtual enterprises, eventually leading
to a community of virtual enterprises and virtual
markets.

These components can model, support and
execute business process activities within an
organization, and can also interconnect and
coordinate business processes across
organizations, such as to support inter-
organizational workflow. As a framework, it is
possible to compose appropriate business process
components that provide computer-based support
for common business processes such as
purchasing, accounts payable, accounts, receivable,
and other corporate financial operations. Such a
framework of business process components may
then be reused and specialized in different
organizational settings, thus providing a foundation
for reusable software components for e-commerce.

4.4. Intelligent Agents as Part of Component
Technologies

One of the new trends in component-based
software development is to use intelligent agents as
the gluing components within a component
framework. Intelligent agents are thought of as a
new candidate for providing interoperability in a
volatile and dynamic environment where
interactions among ad hoc market players are
difficult to plan. According to Hedberg (1996),
intelligent agents are autonomous software entities
that can navigate heterogeneous computing
environments and can, either alone or working with
other agents, achieve some goal. Thus, they
require on-board intelligence to achieve their task,
such as planning, reasoning, and learning
algorithms (Franklin and Graesser, 1997).

One important feature of intelligent agents is
the ability to provide services via negotiation and to
coordinate among multiple agents (Jennings et al.,
1998). While research and development of
intelligent agents have met with some remarkable
success, notably in Internet search and electronic
market simulation, the application of intelligent
agent technology in component-based e-commerce
remains an open research area.

4.5. Database Support for Component-based
E-Commerce

As mentioned by Larry Ellison the CEO of Oracle,
“The days of pure database market is out forever,
and in is the integrated software market”.
Researchers of database community may have to

look outwards to find new and exciting research
problems. E-commerce might be one new business
domain that can provide such opportunities.

4.5.1. New Roles of DB Management Systems

Databases provide a foundation for many types of
information systems and can be thought of as the
cornerstone of modern information technology. With
the emergence of component-based software
development, the role of database management
systems may also change. The traditional view of
information system development is to think of a
database management system as the platform and
the information systems developed as applications
of databases. This view may prove to be limiting in
component-based software engineering and new
views might emerge that take the e-commerce
applications as the principle system and databases
as servant components.

New concepts in future databases are evolving
towards support for electronic commerce. For
instance, evolving databases are suggested to
support negotiations in electronic commerce
(Fordham, Abiteboul, and Yesha, 1997). The term
“evolving” stresses the extremely dynamic nature of
a negotiation, which requires to change the product
descriptions, orders, and even protocols of
negotiation on the fly. Another example is
supporting EDI via distributed databases (Adam et
al., 1998), which support the exchange of EDI
messages through database transactions. As a
result, the application-to-application communication
is replaced by database-to-database
communication.

4.5.2. Database Support for Cooperative Agents

New distributed database technologies may be
needed for providing scalable, mobile, and
inexpensive database systems as components for
electronic commerce. For instance, mobile and
autonomous intelligent agents need to carry their
own data resources. Small, simple, yet efficient
databases might be needed for intelligent agents or
their agencies for cooperative problem solving. To
support a set of cooperative computer agents,
Berndtsson, Chakravathy, and Lings (1997)
proposed the use of active databases as an
enabling technology for cooperative information
systems. The business model of database
management system might change in this case
since the database services may be provided by
third parties that are not owners of the intelligent
agents.

4.5.3. XML-based Document Databases

The document-centric interoperable e-commerce
frameworks will rely heavily on database services to
deposit and access the common business library
and the domain specific information. These
document databases will provide new challenges to
database research since their requirements are
different from the conventional business transaction
databases. The data in XML-based documents are
likely to be semi-structured and the transactions to
the documents are mostly read-accesses. Although
there are already several applications on the market
that store XML documents in relational databases it
is not clear if relational database is the best solution
for XML documents.

4.5.4. Database Support for Large-scale
Repositories of Business Process
Components

The data for business process components
discussed above need to be stored in large-scale
repositories such as data warehouses. However,
computational components require specialized
supports that are not needed in document
repositories. It would be interesting to study various
forms of data related to computational components
in both compilation time and runtime. This will
amount to a computing environment where business
programs are stored, developed, sold, and used.
Exciting research topics are bound to emerge in this
new area.

5. Concluding Remarks
Component-based programming with Microsofts
ActiveX/COM or JavaSoft’s JavaBeans has quickly
become a popular programming paradigm of choice.
These component models have a historical origin in
the assembly of user interfaces, where they are
used to route user interface events such as mouse
clicks and keyboard entries. The most interesting
future component markets will probably be for
business components (often called business
objects) on the server side, rather than on the client
side where the margins are much lower and the
requirements more generic. They are modeled after
the real world to provide certain business functions
like Customer, Order or Product.

The demand for large-scale, complex, and
highly maintainable e-commerce systems is creating
a fast growing market of third party components.
From the buyers’ perspective, this requires an
application for component-based software systems
life cycle that includes software architecture
selection suitable for component-based system
construction and component evaluation, selection,

and customization. From the sellers’ perspective,
the components being built must conform to open
standard, can be used under multiple frameworks,
and can support a broad range of business
applications. At the moment, two groups of
component markets are evolving around the Java-
based architecture led by Sun Microsystems, IBM,
and others, and Visual Basic and ActiveX-based
architecture supported by Microsoft.

In this paper, we studied the current practices
in component-based e-commerce in industries and
analyzed the future directions in its research and
development. Our findings indicate that component-
based e-commerce is a promising area for research,
development, and application. All signs point to a
trend of rapid change as numerous frameworks,
standards, and systems in e-commerce mushroom.
Many research issues are emerging in the general
area of component-based software development
and in electronic commerce such as e-commerce
frameworks, standards, interoperability, etc.
Furthermore, we also identified several research
areas with a database focus.

References

1. Adam et al. “EDI through a distributed
information systems approach”, Proceedings of
the 31st Annual Hawaii International
Conference on Systems Sciences, Hawaii, USA,
January 6-9, 1998.

2. Berndtsson, M.; Chakravathy, S.; and Lings, B.
“Extending database support for coordination
among agents”, International Journal of
Cooperative Information Systems, Sep.-Dec.
1997, Vol. 6, (no. 3-4):315-39.

3. Dogac, A., "A Survey of the Current State-of-
the-Art in Electronic Commerce and Research
Issues in Enabling Technologies", Euro-Med
Net 98 Conference, Electronic Commerce
Track, March 1998.

4. Franklin, S. and Graesser, A. “Is it an agent, or
just a program? a taxonomy for autonomous
agents”. Intelligent Agents III. Agent Theories,
Architectures, and Languages. ECAI ’96
Workshop (ATAL) Proceedings (1997) p21-35.

5. Fordham, B.; Abiteboul, S.; and Yesha, Y.
“Evolving databases: an application to eletronic
commerce”, Proceedings of the International
Database Engineering and Applications
Symposium, Montreal, Canada, August 25-27,
1997.

6. Hedberg, S. “Agents for sale: first wave of
intelligent agents go commercial”, IEEE Expert
vol.11, no.6 (Dec. 1996), p16-19.

7. Jacobson, I., Griss, M., and Jonsson, P. Software
Reuse: Architecture, Process, and Organization
for Business Success, ACM Press & Addison
Wesley Longman, 1997.

8. Jennings, N.R., Norman, T. J., and Faratin, P.,
"An agent-based business process
management". In this issue.

9. Lewandowski, S. M., “Frameworks for
component-based client/server computing,”
ACM Computing Survey, Vol. 30, No. 1, March
1998.

10. Meltzer, B., and Glushko, R., “XML and
electronic commerce: enabling the network
economy,” In this issue.

11. Pour, G, “Component-based software
development approach: new opportunities and
challenges”, Proceedings of the 26th

International Conference on Technology of
Object-Oriented Languages and Systems
(TOOLS USA), 1998.

12. Sametinger, J. Software Engineering With
Reusable Components, Springer-Verlag, Berlin
Heidelberg, 1997.

13. Scacchi, W. and J. Noll, “Process-Driven
Intranets: Life-Cycle Support for Process
Reengineering,” IEEE Internet Computing,
1(5):42-49, September 1997.

14. Schlueter, C.; Shaw, M.J. “A strategic
framework for developing electronic
commerce.” IEEE Internet Computing, Nov.-
Dec. 1997, vol.1, (no.6):20-8.

15. Segev, A. and Bichler, M. “Component-based
electronic commerce”, Handbook of Electronic
Commerce, 1998.

16. Shaw, M.J.; Gardner, D.M.; Thomas, H.
“Research opportunities in electronic
commerce.” Decision Support Systems, Nov.
1997, vol.21, (no.3):149-56.

17. Thompson, C., Linden, T., and Filman, B.,
“Thoughts on OMA-NG: the next generation
object management architecture,” (08/1997),
http://www.objs.com/staging/OMG-OMA-
NG.html.

18. WFMC, “Workflow reference model.”
Technical report, Workflow Management
Coalition, Brussels, 1994.

